Me encontré con este problema hace un tiempo pero no puedo pasar de cierto punto.
Dejemos que $f:\mathbb{N} \rightarrow \mathbb{N}$ tal que $f(n+1)>f(n)$ et $$f(f(n))=3n$$ para todos $n$ . Evaluar $f(2001)$ .
Creo que la inducción podría ser la mejor manera de abordar esto, pero ni siquiera puedo elaborar un buen lema para empezar.
Esta pregunta es muy diferente a la del "duplicado". La otra, aunque comparte la misma ecuación, es más sencilla y sólo requiere calcular $f(10)$ , no se requiere ningún lema o inducción.
0 votos
Relacionado con esto: math.stackexchange.com/questions/337208/