$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\lim_{\epsilon \to 0^{+}}\int_{\epsilon}^{1/\epsilon}
\bracks{\media \cos\pars{x}}\,{\dd x \sobre x} = \gamma.\quad}$
$\ds{\quad\gamma}$ es la
De Euler-Mascheroni Constante.
\begin{align}
&\color{#c00000}{
\lim_{\epsilon \to 0^{+}}\int_{\epsilon}^{1/\epsilon}\bracks{
\half - \cos\pars{x}}\,{\dd x \over x}}
=\lim_{\epsilon \to 0^{+}}\bracks{-\int_{\epsilon}^{1/\epsilon}{
\cos\pars{x} - 1 \over x}\,\dd x - \half\int_{\epsilon}^{1/\epsilon}{\dd x \over x}}
\\[3mm]&=\lim_{\epsilon \to 0^{+}}\braces{
-\bracks{{\rm Ci}\pars{1 \over \epsilon} - \ln\pars{1 \over \epsilon} - \gamma}
+ \bracks{{\rm Ci}\pars{\epsilon} - \ln\pars{\epsilon} - \gamma}
-\half\ln\pars{1/\epsilon \over \epsilon}}\tag{1}
\end{align}
donde $\ds{{\rm Ci}\pars{x}}$ es uno de los
Coseno Funciones Integrales.
La expresión de $\pars{1}$ puede escribirse como
\begin{align}
&\color{#c00000}{
\lim_{\epsilon \to 0^{+}}\int_{\epsilon}^{1/\epsilon}\bracks{
\half - \cos\pars{x}}\,{\dd x \over x}}
=\gamma + \lim_{\epsilon \to 0^{+}}\braces{
-{\rm Ci}\pars{1 \over \epsilon}
+ \bracks{{\rm Ci}\pars{\epsilon} - \ln\pars{\epsilon} - \gamma}}\tag{2}
\end{align}
Sin embargo
$$
\lim_{\epsilon \to 0^{+}}{\rm Ci}\pars{1 \over \epsilon} = 0\,,\qquad
\lim_{\epsilon \to 0^{+}}\bracks{
{\rm Ci}\pars{\epsilon} - \gamma \ln\pars{\epsilon}} = 0
$$
tal que $\pars{2}$ conduce a
$$\color{#00f}{\large
\lim_{\epsilon \to 0^{+}}\int_{\epsilon}^{1/\epsilon}\bracks{
\media \cos\pars{x}}\,{\dd x \sobre x} = \gamma}
$$