$\displaystyle{\xi = {\rm u}' + {\rm ui}
\Longrightarrow
\xi' = {\rm u}" + {\rm ui}'
\Longrightarrow
\xi' - {\rm i}\xi = \left\vert t\right\vert\,;
\qquad
{\rm u} = \Im\xi}$
$$
{{\rm d}\left({\rm e}^{-{\rm i}t}\xi\right) \over {\rm d}t}
=
{\rm e}^{-{\rm i}t}\,\left\vert t\right\vert
\Longrightarrow
{\rm e}^{-{\rm i}t}\xi - \left(-1 + {\rm i}\right)
=
\int_{0}^{t}{\rm e}^{-{\rm i}t'}\,\left\vert t'\right\vert\,{\rm d}t'
$$
$$
\xi
=
-{\rm e}^{{\rm i}t} + {\rm i}{\rm e}^{{\rm i}t}
+
\int_{0}^{t}
{\rm e}^{{\rm i}\left(t - t'\right)}\,\left\vert t'\right\vert\,{\rm d}t'
$$
$$
\begin{array}{|c|}\hline\\ \\
\color{#ff0000}{\large\quad{\rm u}\left(t\right)
=
-\sin\left(t\right) + \cos\left(t\right)
+
\int_{0}^{t}\sin\left(t - t'\right)\left\vert t'\right\vert\,{\rm d}t'\quad}
\\ \\ \hline
\end{array}
$$
${\bf ADDENDUM:}$
\begin{align}
\int_{0}^{t}\sin\left(t - t'\right)\left\vert t'\right\vert\,{\rm d}t'
&=
\left.\vphantom{\LARGE A}
\cos\left(t - t'\right)\left\vert t'\right\vert\,
\right\vert_{t'\ =\ 0}^{t'\ = t}
-
\int_{0}^{t}\cos\left(t - t'\right){\rm sgn}\left(t'\right),{\rm d}t'
\\[3mm]&=
\left\vert t\right\vert
+
\left.\vphantom{\LARGE A}
\sin\left(t - t'\right){\rm sgn}\left(t'\right)
\right\vert_{t'\ =\ 0}^{t'\ = t}
-
\int_{0}^{t}\sin\left(t - t'\right)
\left\lbrack 2\delta\left(t'\right)\right\rbrack\,{\rm d}t'
\\[3mm]&=
\left\vert t\right\vert
-
2\sin\left(t\right)\Theta\left(t\right)
\end{align}
$$
\begin{array}{|rcl|}\hline\\ \\
\color{#ff0000}{\large\quad{\rm u}\left(t\right)}
& = &
\color{#ff0000}{\large-\left\lbrack 2\Theta\left(t\right) + 1\right\rbrack\sin\left(t\right) + \cos\left(t\right)
+
\left\vert t\right\vert}
\\[3mm]
\color{#ff0000}{\large\quad{\rm u}'\left(t\right)}
& = &
\color{#ff0000}{\large-\left\lbrack 2\Theta\left(t\right) + 1\right\rbrack\cos\left(t\right)
-
\sin\left(t\right)
+
{\rm sgn}\left(t\right)\quad}
\\[3mm]
\color{#ff0000}{\large\quad{\rm u}''\left(t\right)}
& = &
\color{#ff0000}{\large\phantom{-}\left\lbrack 2\Theta\left(t\right) + 1\right\rbrack\sin\left(t\right)
-
\cos\left(t\right)}
\\ \\ \hline
\end{array}
$$