Considerar una teoría simétrica de $SO(N)$ de $N$ fields,$$\mathcal{L} = {1\over2} \partial_\mu \Phi^a \partial^\mu \Phi^a - {1\over2} m^2 \Phi^a \Phi^a - {1\over4} \lambda (\Phi^a \Phi^a)^2.$$The Noether charge is$$Q_{ab} = \int_{\Omega^3} d^3x\,J_{ab}^0,$$where $\Omega^3$ is all space. $Q$ is constant in time. We can express $J^0$ in terms of $\pi$ and $\Phi$ as$$J_{ab}^0 = \partial^0 \Phi_a \epsilon_{ab}\Phi_b = \pi_a \epsilon_{ab} \Phi_b.$$Define$$\epsilon^{ij} = \begin{cases} 1 & \text{if }(i, j) = (a, b) \\ 0 & \text{otherwise.}\end{cases}\Big\} = -\epsilon^{ji},$$so $\epsilon^{ab reales escalares} = 1 =-\epsilon^{ba}$ and all other entries are $0$. Then the Noether charge becomes$$Q_{ab} = \int d^3x\,J_{ab}^0 = \int d^3x\,\pi_a \epsilon_{ab} \Phi_b = {1\over2} \int d^3x(\pi_a \Phi_b - \pi_b \Phi_a).$$While summing over $SO (N) $ indices, we pick up a factor of $ {1\over2} $ since the skew-symmetry of $\epsilon$ nos hace a cuenta de la doble.
Mi pregunta es, ¿cuáles son lo cargos de $SO(N)$$Q_{ab}$aquí en términos de operadores de aniquilación y creación bosonic?