$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\int_{0}^{4\expo{}}x^{2}\,{\ln\pars{x}\ln\pars{4\expo{} - x} \over
\root{x\pars{4\expo{} - x}}}\,\dd x}}
\,\,\,\stackrel{x/\pars{4\expo{}}\ \mapsto\ x}{=}\,\,\,
\int_{0}^{1}\pars{4\expo{}}^{2}x^{2}\,
{\ln\pars{4\expo{}x}\ln\pars{4\expo{} - 4\expo{}x} \over
\root{4\expo{}x\pars{4\expo{} - 4\expo{}x}}}\,4\expo{}\,\dd x
\\[5mm] = &\
16\expo{}^{2}\int_{0}^{1}x^{2}\,{\bracks{\ln\pars{4\expo{}} + \ln\pars{x}}
\bracks{\ln\pars{4\expo{}} + \ln\pars{1 - x}} \over \root{x\pars{1 - x}}}\,\dd x
\\[5mm] = &\
16\expo{}^{2}\left[%
\ln^{2}\pars{4e}\!\!\int_{0}^{1}\!\!x^{3/2}\pars{1 - x}^{-1/2}\,\dd x +
\ln\pars{4e}\!\!\int_{0}^{1}\!\!{x^{2}\ln\pars{x} \over \root{x\pars{1 - x}}}
\,\dd x +
\ln\pars{4e}\!\!\int_{0}^{1}\!\!{x^{2}\ln\pars{1 - x} \over
\root{x\pars{1 - x}}}\,\dd x\right.
\\[2mm] & \phantom{AAAAA}+
\left.\int_{0}^{1}\!\!{x^{2}\ln\pars{x}\ln\pars{1 - x} \over
\root{x\pars{1 - x}}}\,\dd x\right]
\end{align}
Tenga en cuenta que
$\ds{\mc{I}\pars{\mu\nu} \equiv \int_{0}^{1}x^{\mu}\pars{1 - x}^{\nu}
\,\dd x\quad}$
es igual a
$\ds{\quad{\Gamma\pars{\mu + 1}\Gamma\pars{\mu + 1} \over
\Gamma\pars{\mu + \nu + 2}}}$ tal que
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\int_{0}^{4\expo{}}x^{2}\,{\ln\pars{x}\ln\pars{4\expo{} - x} \over
\root{x\pars{4\expo{} - x}}}\,\dd x}}
\\[5mm] = &\
16\expo{}^{2}\left[%
\ln^{2}\pars{4\expo{}}\,\mc{I}\pars{{3 \over 2},-\,{1 \over 2}} +
\ln\pars{4\expo{}}\,\left.\partiald{\mc{I}\pars{\mu,-1/2}}{\mu}
\right\vert_{\ \mu\ =\ 3/2} +
\ln\pars{4\expo{}}\,\left.\partiald{\mc{I}\pars{3/2,\nu}}{\nu}
\right\vert_{\ \nu\ =\ -1/2}\right.
\\[2mm] & \phantom{AAAAA}+
\left.{\left.{\partial^{2}\mc{I}\pars{\mu,\nu} \over \partial\mu\,\partial\nu}\right\vert_{\ \mu\ =\ 3/2\,,\ \nu\ =\ -1/2}}\right]
\label{1}\tag{1}
\end{align}
$$
\vphantom{\Enorme A^{^{A}}}\mbox{}
$$
\begin{equation}
\mbox{with}\quad\left\{\begin{array}{rcl}
\ds{\mc{I}\pars{{3 \over 2},-\,{1 \over 2}}} & \ds{=} &
\ds{\phantom{-}{3\pi \over 8}}
\\[5mm]
\ds{\left.\partiald{\mc{I}\pars{\mu,-1/2}}{\mu}
\right\vert_{\ \mu\ =\ 3/2}} & \ds{=} &
\ds{\phantom{-}{7\pi \over 16} - {3\pi\ln\pars{2} \over 4}}
\\[5mm]
\ds{\left.\partiald{\mc{I}\pars{3/2,\nu}}{\nu}
\right\vert_{\ \nu\ =\ -1/2}} & \ds{=} &
\ds{-\,{9\pi \over 16} - {3\pi\ln\pars{2} \over 4}}
\\[5mm]
\ds{\left.{\partial^{2}\mc{I}\pars{\mu,\nu} \over \partial\mu\,\partial\nu}\right\vert_{\ \mu\ =\ \nu\ =\ -1/2}} & \ds{=} &
\ds{-\,{3\pi \over 16} - {\pi^{3} \over 16} + {\pi\ln\pars{2} \over 4} +
{3\pi\ln^{2}\pars{2} \over 2}}
\end{array}\right.
\label{2}\etiqueta{2}
\end{equation}
\eqref{1} y \eqref{2} conducir a
$$
\bbx{\int_{0}^{4\expo{}}x^{2}\,{\ln\pars{x}\ln\pars{4\expo{} - x} \over
\raíz{x\pars{4\expo{} - x}}}\,\dd x =
-\expo{}^{2}\pi\pars{\pi - 1}\pars{\pi + 1}}
$$