$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
\color{#f00}{\sum_{j = 1}^{n}{n \choose j}{n \choose j - 1}} & =
\sum_{j = 1}^{n}{n \choose j}{n \choose n - j + 1} =
\sum_{j = 1}^{n}{n \choose j}\ \overbrace{\oint_{\verts{z} = 1}
{\pars{1 + z}^{n} \over z^{n - j + 2}}\,{\dd z \over 2\pi\ic}}
^{\ds{{n \choose n - j + 1}}}
\\[3mm] & =
\oint_{\verts{z} = 1}{\pars{1 + z}^{n} \over z^{n + 2}}\
\overbrace{\sum_{j = 1}^{n}{n \choose j}z^{j}}^{\ds{\pars{1 + z}^{n} - 1}}\
\,{\dd z \over 2\pi\ic}
\\[3mm] & =
\overbrace{%
\oint_{\verts{z} = 1}{\pars{1 + z}^{2n} \over z^{n + 2}}\,{\dd z \over 2\pi\ic}}
^{\ds{{2n \choose n + 1}}}\ -\
\overbrace{%
\oint_{\verts{z} = 1}{\pars{1 + z}^{n} \over z^{n + 2}}\,{\dd z \over 2\pi\ic}}
^{\ds{{n \choose n + 1} = 0}} =
{2n \choose n + 1} = \color{#f00}{{2n \choose n - 1}}
\end{align}