$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{0}^{\pi/2}\theta^{2}\ln^{4}\pars{2\cos\pars{\theta}}\,\dd\theta ={33\pi^{7} \over 4480} + {3\pi \over 2}\,\zeta^{2}\pars{3}:\ {\large ?}}$ .
\begin{align}&\color{#c00000}{\int_{0}^{\pi/2}% \theta^{2}\ln^{4}\pars{2\cos\pars{\theta}}\,\dd\theta} =\int_{0}^{\pi/2}\theta^{2}\ln^{4}\pars{2\root{1 + \cos\pars{2\theta} \over 2}} \,\dd\theta \\[3mm]&={1 \over 8}\int_{0}^{\pi} \theta^{2}\ln^{4}\pars{2^{1/2}\root{1 + \cos\pars{\theta}}}\,\dd\theta ={1 \over 16}\int_{-\pi}^{\pi} \theta^{2}\ln^{4}\pars{2^{1/2}\root{1 + \cos\pars{\theta}}}\,\dd\theta \\[3mm]&={1 \over 16} \oint_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}}\ <\ \pi}} \bracks{-\ic\ln\pars{z}}^{2}\ln^{4}\pars{2^{1/2}\root{1 + {z^{2} + 1 \over 2z}}} \,{\dd z \over \ic z} \\[3mm]&={\ic \over 16} \oint_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}}\ <\ \pi}} \ln^{2}\pars{z}\ln^{4}\pars{z + 1 \over z^{1/2}}\,{\dd z \over z} \\[3mm]&={\ic \over 16}\lim_{\mu\ \to\ 0 \atop \nu\ \to\ 0}\partiald[2]{}{\mu}\partiald[4]{}{\nu} \oint_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}}\ <\ \pi}} z^{\mu}\pars{z + 1 \over z^{1/2}}^{\nu}\,{\dd z \over z} \end{align}
$$ \color{#c00000}{\int_{0}^{\pi/2}% \theta^{2}\ln^{4}\pars{2\cos\pars{\theta}}\,\dd\theta} ={\ic \over 16}\lim_{\mu\ \to\ 0 \atop \nu\ \to\ 0} \partiald[2]{}{\mu}\partiald[4]{}{\nu}\color{#00f}{% \oint_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}}\ <\ \pi}} z^{\mu - \nu/2 - 1}\pars{z + 1}^{\nu}\,\dd z} $$
\begin{align}&\color{#00f}{% \oint_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}}\ <\ \pi}} z^{\mu - \nu/2 - 1}\pars{z + 1}^{\nu}\,\dd z} \\[3mm]&=-\int_{-1}^{0}\pars{-x}^{\mu - \nu/2 - 1} \exp\pars{\bracks{\mu - {\nu \over 2} - 1}\pi\ic}\pars{x + 1}^{\nu}\,\dd x \\[3mm]&\phantom{=\!}-\int_{0}^{-1}\pars{-x}^{\mu - \nu/2 - 1} \exp\pars{-\bracks{\mu - {\nu \over 2} - 1}\pi\ic}\pars{x + 1}^{\nu}\,\dd x \\[1cm]&=\exp\pars{\bracks{\mu - {\nu \over 2}}\pi\ic} \int_{0}^{1}x^{\mu - \nu/2 - 1}\pars{1 - x}^{\nu}\,\dd x \\[3mm]&-\exp\pars{-\bracks{\mu - {\nu \over 2}}\pi\ic} \int_{0}^{1}x^{\mu - \nu/2 - 1}\pars{1 - x}^{\nu}\,\dd x \\[1cm]&=2\ic\sin\pars{\bracks{\mu - {\nu \over 2}}\pi} \int_{0}^{1}x^{\mu - \nu/2 - 1}\pars{1 - x}^{\nu}\,\dd x \\[3mm]&=2\ic\sin\pars{\bracks{\mu - {\nu \over 2}}\pi}\, {\Gamma\pars{\mu - \nu/2}\Gamma\pars{\nu + 1} \over \Gamma\pars{\mu + \nu/2 + 1}} =2\pi\ic\, {\Gamma\pars{\nu + 1} \over \Gamma\pars{1 - \mu + \nu/2}\Gamma\pars{1 + \mu + \nu/2 }} \end{align}
$$ \color{#c00000}{\int_{0}^{\pi/2}% \theta^{2}\ln^{4}\pars{2\cos\pars{\theta}}\,\dd\theta} =-\,{\pi \over 8}\lim_{\mu\ \to\ 0 \atop \nu\ \to\ 0} \partiald[2]{}{\mu}\partiald[4]{}{\nu}{\nu \choose \mu + \nu/2} $$ Las derivadas y los límites son una tarea formidable que podemos evaluar con un CAS : $$\color{#66f}{\large% \int_{0}^{\pi/2}\theta^{2}\ln^{4}\pars{2\cos\pars{\theta}}\,\dd\theta ={33\pi^{7} \over 4480} + {3\pi \over 2}\,\zeta^{2}\pars{3}} \approx {\tt 29.0568} $$