Se puede demostrar que
$$\lim_{x \to 0}\, \sin x = x$$
so for $n \gg un$
$$\begin{align}
\sin(a/n) & \approx a/n\\
n\sin(a/n) & \approx a
\end{align}$$
Thus (as others have mentioned) the sum in the OP is approximately 180, assuming (as we should :) ) that the arguments of the $\sin()$ functions are in radians.
To estimate the error we can use the first few terms of the power series expansion of $\sin(x)$:
$$\sin(x) = x - x^3/3! + x^5/5! - x^7/7! + \cdots$$
Así
$$\begin{align}
a - n\sin(a/n) & = a(1 - sin(a/n)/(a/n))\\
& \approx a(1 - ((a/n) - (a/n)^3/3! + (a/n)^5/5!))/(a/n)\\
& = a(1 - (1 - (a/n)^2/3! + (a/n)^4/5!))\\
& = a((a/n)^2/6 - (a/n)^4/120))\\
\end{align}$$
This approximation is ok even for relatively large $a/n$, as the table below shows.
n: 1 - n sin(1/n) 1/(6n^2) 1/(6n^2) - 1/(120n^4)
2: 4.11489228e-02 4.16666667e-02 4.11458333e-02
4: 1.03841630e-02 1.04166667e-02 1.03841146e-02
8: 2.60213292e-03 2.60416667e-03 2.60213216e-03
16: 6.50914522e-04 6.51041667e-04 6.50914510e-04
32: 1.62752470e-04 1.62760417e-04 1.62752469e-04
64: 4.06896075e-05 4.06901042e-05 4.06896075e-05
As Henning Makholm mentioned, most of the error comes from the $6^{6^{6}} \sin\left( \frac{113}{6^{6^{6}}} \right)$ term, so we can safely ignore the other terms.
For $a= 113, n = 6^{6^6}$
$n \approx$ 2.65911977 e+36305
$a(a/n)^2/6 \approx$ 3.40101291 e-72606
$a(a/n)^4/120 \approx$ 3.07085545 e-145214
Por lo que el error es algo menor que el de Henning del presupuesto. Un error de 3.4 e-72606 es pequeña, por cualquiera de los estándares, sino que es positivamente enorme en comparación con el error en la siguiente mayor plazo:
Para $a = 76, n = 7^{7^7}$
$n \approx$ 3.75982353 e+695974
$a(a/n)^2/6 \approx$ 5.17552731 e-1391945
$a(a/n)^4/120 \approx$ 1.05734538 e-2783891