$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{\bracks{0,1}^{2}}{\dd x\,\dd y \over \root{x^{2} + y^{2}}} & =
\int_{\bracks{0,1}^{2}}{\dd x\,\dd y \over r} =
\int_{\bracks{0,1}^{2}}\bracks{\partiald{\pars{x/r}}{x} -
\partiald{\pars{-y/r}}{y}}\,\dd x\,\dd y
\\[5mm] & =
\int_{\bracks{0,1}^{2}}\bracks{%
\nabla\times\pars{-\,{y \over r}\,\hat{x}\ +\ {x \over r}\,\hat{y}}}_{z}
\,\dd x\,\dd y
\\[5mm] & =
\int_{\partial\bracks{0,1}^{2}}{-y\,\dd x + x\,\dd y \over \root{x^{2} + y^{2}}}
\qquad\pars{~Stokes\ Theorem~}
\\[5mm] & =
\int_{0}^{1}{\dd y \over \root{1 + y^{2}}} +
\int_{1}^{0}{-\dd x \over \root{x^{2} + 1}} =
2\int_{0}^{1}{\dd x \over \root{x^{2} + 1}}
\\[5mm] \stackrel{x\ \mapsto\ \tan\pars{x}}{=}\,\,\,& 2\int_{0}^{\pi/4}\sec\pars{x}\,\dd x =
2\bracks{\vphantom{\Large A}\ln\pars{\sec\pars{x} + \tan\pars{x}}}_{\ 0}^{\ \pi/4}
\\[5mm] &=
2\ln\pars{\sec\pars{\pi \over 4} + \tan\pars{\pi \over 4}} =
\bbx{2\ln\pars{\root{2} + 1}} \approx 1.7627
\end{align}