Darse cuenta:
$$\omega^5=1\Longleftrightarrow$ $$$\omega^5=e^{0i}\Longleftrightarrow$ $$$\omega=\left(e^{2\pi ki}\right)^{\frac{1}{5}}\Longleftrightarrow$ $$$\omega=e^{\frac{2\pi ki}{5}}$ $
Con y $k\in\mathbb{Z}$
Entonces, las soluciones son:
$k:0-4$ $$$\omega_0=e^{\frac{2\pi\cdot0i}{5}}=e^{\frac{0}{5}}=e^0=1$ $$$\omega_1=e^{\frac{2\pi\cdot1i}{5}}=e^{\frac{2\pi i}{5}}=e^{\frac{2\pi i}{5}}$ $$$\omega_2=e^{\frac{2\pi\cdot2i}{5}}=e^{\frac{4\pi i}{5}}=e^{\frac{4\pi i}{5}}$ $$$\omega_3=e^{\frac{2\pi\cdot3i}{5}}=e^{\frac{6\pi i}{5}}=e^{-\frac{4\pi i}{5}}$ $
Asi que:
$$ \ omega = \begin{cases}
1\\
e^{\pm\frac{2\pi i}{5}}\\
e^{\pm\frac{4\pi i}{5}}
\end {cases} $$
Cuando$$\omega_4=e^{\frac{2\pi\cdot4i}{5}}=e^{\frac{8\pi i}{5}}=e^{-\frac{2\pi i}{5}}$:$\omega=1$ $
Cuando$$\log_2\left|1+1+1^2+1^3-\frac{1}{1}\right|=\log_2\left|1+1+1+1-1\right|=\log_2\left|3\right|=\log_2(3)$:$\omega=e^{\pm\frac{2\pi i}{5}}$ $
Cuando$$\log_2\left|1+e^{\pm\frac{2\pi i}{5}}+\left(e^{\pm\frac{2\pi i}{5}}\right)^2+\left(e^{\pm\frac{2\pi i}{5}}\right)^3-\frac{1}{e^{\pm\frac{2\pi i}{5}}}\right|=1$:$\omega=e^{\pm\frac{4\pi i}{5}}$ $