$$x^{14}+x^7+1\equiv0\pmod{7^3}\implies x^{14}+x^7+1\equiv0\pmod{7^2}, x^{14}+x^7+1\equiv0\pmod7$$
Claramente, $(x,7)=1$
$$\implies x^7\equiv x\pmod 7, x^{14}\equiv x^2$$
Así, $$x^{14}+x^7+1\equiv0\pmod7\implies x^2+x+1\equiv0$ $ $$\iff x^2+x-6\equiv0\iff (x+3)(x-2)\equiv0$ $
$$\implies x\equiv2,-3\pmod7$$
Ahora uso el lema de Hensel
Si $\displaystyle f(x)=x^{14}+x^7+1,f'(x)=14x^{13}+7x^6\equiv0\pmod7$
Si $\displaystyle x\equiv2,x=2+7a,x^7=(2+7a)^7=2^7+7(2a)^67+\cdots+(7a)^7\equiv2^7\pmod{49}\equiv30$
$\displaystyle\implies x^{14}\equiv(30)^2\equiv18\pmod{49}$
$\displaystyle\implies f'(2)\not\equiv0\pmod7$
Del mismo modo, $\displaystyle f'(3)\not\equiv0\pmod7$
¿Qué podemos concluir de aquí?