$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\lim_{n \to \infty}{1^{p} + 3^{p} + \cdots + \pars{2n + 1}^{\,p} \over n^{p + 1}} = \lim_{n \to \infty}{\sum_{k = 0}^{n}\pars{2k + 1}^{\,p} \over n^{p + 1}} \\[5mm] = &\ \lim_{n \to \infty}{\sum_{k = 0}^{n + 1}\pars{2k + 1}^{\,p} - \sum_{k = 0}^{n}\pars{2k + 1}^{\,p} \over \pars{n + 1}^{p + 1} - n^{p + 1}} \qquad\pars{~Stolz-Ces\grave{a}ro\ Theorem~} \\[5mm] = &\ \lim_{n \to \infty}{\pars{2n + 3}^{\,p} \over n^{p + 1} \bracks{\pars{1 + 1/n}^{p + 1} - 1}} = 2^{p}\lim_{n \to \infty}{\bracks{1 + 3/\pars{2n}}^{\,p} \over n \bracks{\pars{1 + 1/n}^{p + 1} - 1}}\label{1}\tag{1} \end{align}
Tenga en cuenta que $\ds{{\bracks{1 + 3/\pars{2n}}^{\,p} \over n \bracks{\pars{1 + 1/n}^{p + 1} - 1}} \,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\, {1 + 3p/\pars{2n} + 9p\pars{p - 1}/\pars{8n^{2}}\over n\bracks{\pars{p + 1}/n + \pars{p + 1}p/\pars{2n^{2}}}}}$
\begin{align} &\mbox{such that}\quad\lim_{n \to \infty}{\bracks{1 + 3/\pars{2n}}^{\,p} \over n \bracks{\pars{1 + 1/n}^{p + 1} - 1}} = {1 \over p + 1} \\[5mm] &\ \mbox{and}\quad\pars{~\mrm{see}\ \eqref{1}~}\quad \bbx{\lim_{n \to \infty}{1^{p} + 3^{p} + \cdots + \pars{2n + 1}^{\,p} \over n^{p + 1}} = {2^{p} \over p + 1}} \end{align}
0 votos
Esto parece una suma de Riemann, en particular si se elimina el $2n+1$ plazo (y $\frac{(2n+1)^p}{n^{p+1}}\to 0$ ) es una suma de Riemann para $\int_{0}^{1}(2x)^p\,dx$ Creo que sí.