$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffe]{\ds{\lim_{n \to \infty}\pars{{1 \over n!}\int_{0}^{n}\expo{-t}t^{n}\,\dd t}}} =
\lim_{n \to \infty}\bracks{%
{1 \over n!}\int_{0}^{n}\expo{-\pars{n - t}}\pars{n - t}^{n}\,\dd t}
\\[5mm] = &\
\lim_{n \to \infty}\bracks{%
{\expo{-n}n^{n} \over n!}\int_{0}^{n}\expo{t}\pars{1 - {t \over n}}^{n}\,\dd t} =
\lim_{n \to \infty}\bracks{%
{\expo{-n}n^{n} \over n!}\int_{0}^{n}
\exp\pars{t + n\ln\pars{1 - {t \over n}}}\,\dd t}
\end{align}
En este punto, voy a utilizar el
Laplace Método:
\begin{align}
&\bbox[10px,#ffe]{\ds{\lim_{n \to \infty}\pars{{1 \over n!}\int_{0}^{n}\expo{-t}t^{n}\,\dd t}}} =
\lim_{n \to \infty}\bracks{%
{\expo{-n}n^{n} \over n!}\int_{0}^{\infty}
\exp\pars{-\,{t^{2} \over 2n}}\,\dd t}
\\[5mm] & =
\lim_{n \to \infty}\bracks{%
{\expo{-n}n^{n} \over n!}\,\pars{\root{\pi \over 2}\,n^{1/2}}} =
{\root{2\pi} \over 2}\lim_{n \to \infty}\pars{%
{\expo{-n}n^{n + 1/2} \over n!}}
\\[5mm] & =
{\root{2\pi} \over 2}\lim_{n \to \infty}\pars{%
{\expo{-n}n^{n + 1/2} \over \root{2\pi}n^{n + 1/2}\expo{-n}}}\qquad
\pars{~n!\!-\!Stirling\ Asymptotic\ Expansion ~}
\\[5mm] & = \bbx{1 \over 2}
\end{align}