Dado que $$\Delta_n=(x_1,...,x_{n+1})\in \{\mathbb R^{n+1}: \Sigma x_i=1, x_i\geq0\},$$ set $P=\Delta_m\times\Delta_n$ and $s=m+n$. Since each point of $P$ and $\Delta_s$ can be describe using $s$ parameters, they can be embedded in $\mathbb R^s$ as $P'$ and $\Delta_s'$. Assume, wlog, $P'\subconjunto\Delta_s'$ (scaling and translation are homeomorphisms). Now, let $$ be a point in the interior of $P'$ and $\parcial P'$, $\partial\Delta_s'$ the boundaries of theses sets. Furthermore, for all $x\P'\barra invertida\{a\}$, let $r_x$ be the ray that starts at $$ and passes through $x$. Then, define $h:P'\rightarrow\Delta_s'$ as $h(a)=a$ and $$h(x)=a+\frac{|x'-a|}{|x''-a|}(x-a),$$ where $x'=r_x\cap \partial\Delta_s'$ and $x"=r_x\cap \parcial P'$. I'd like to check that $h$ es una función continua.
Mi intento: Desde $r_x=\{a+\lambda(x-a):\lambda\in \mathbb R_+\},$ $$h(x)=a+\frac{|\lambda_1(x-a)|}{|\lambda_2(x-a)|}(x-a)=a+k(x-a),$$ where $k=\lambda_1/\lambda_2$. But $k$ depends on $x$, so I guess I have to describe $\lambda_1$ and $\lambda_2$ in terms of $x$, pero no pude encontrarlos. Cualquier ayuda será valiosa. Gracias!
Como ejemplo, la siguiente figura representa el $P'$ $\Delta_s'$ si $P=\Delta_2\times\Delta_1$ ($\Delta_s=\Delta_3$).