Deje $M=A+iB$ ser una compleja $n \times n$ Hermitian de la matriz. Primero de todo tenemos que saber que $$(\det M)^2=\det \begin{pmatrix} A & -B \\ B & A \end{pmatrix}.$$ Also $\det \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$ is a polynomial in $n^2$ variables of degree $2n$. Is it true that $\det M$ is a polynomial, say D, of degree $n$ in this $n^2$ variables such that $D^2(M)=\det \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$? The explicit calculations for $n=1,2,3$ sugieren así, sin embargo, no puedo encontrar la información si esto es cierto ni prueba de esto.
Respuesta
¿Demasiados anuncios?
percusse
Puntos
121
La matriz es similar a la
$$ S = T \hat{M} T^{-1}= \begin{pmatrix} I & iI \\ I & -iI \end{pmatrix} \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \begin{pmatrix} \frac12I & \frac12 I\\-\frac i2I& \frac i2I\end{pmatrix} = \begin{pmatrix} A+Bi &\\ &A-Bi \end{pmatrix}= \begin{pmatrix} M &\\ &M^* \end{pmatrix}=\begin{pmatrix} M &\\ &M \end{pmatrix} $$ por lo tanto $S$ $\hat M$ tienen el mismo polinomio característico.