Esta secuencia A177885 en la oeis aparentemente se relaciona imaginaria de la no-trivial de Riemann zeta ceros con el LambertW función. Las partes real e imaginaria de la de Riemann zeta función es la suma de las ondas seno y coseno con logaritmos como frecuencias.
Los logaritmos se puede calcular como:
log(n)=lim
of which the numerators in the Dirichlet series are found in the following infinite table:
T = \begin{bmatrix} 0&0&0&0&0&0&0 \\ 1&-1&1&-1&1&-1&1 \\ 1&1&-2&1&1&-2&1 \\ 1&1&1&-3&1&1&1 \\ 1&1&1&1&-4&1&1 \\ 1&1&1&1&1&-5&1 \\ 1&1&1&1&1&1&-6 \end{bmatrix}
which has the definition:
T(n,k) = -(n-1)\; \text{ if }\; n|k, \;\text{ else } \;1,
Repeating/recursing the formula above we write:
\log(a(n))= \lim_{s\to 1} \, \zeta (s) \sum _{k=1}^n \frac{T(n,k)}{k^{s-1}}
where a(n) appears to be: a(n)=\frac{n^n}{n!}
a(n) = {1, 2, 9/2, 32/3, 625/24, 324/5, 117649/720, 131072/315, 4782969/4480, 1562500/567, 25937424601/3628800, 35831808/1925,...}
\left\{1,2,\frac{9}{2},\frac{32}{3},\frac{625}{24},\frac{324}{5},\frac{117649}{720},\frac{131072}{315},\frac{4782969}{4480},\frac{1562500}{567},\frac{25937424601}{3628800},\frac{35831808}{1925}\right\}
multiplicando con el factorial se encuentra el similar pero alternando la secuencia A177885 en la oeis.
Hay en el comentario de esta fórmula aproximada es:
Table[N[1/2 + 2*Pi*Exp[1]*(n - 11/8)/Exp[1]/LambertW[(n - 11/8)/Exp[1]]*I], {n,
1, 12}]
Table[N[ZetaZero[n]], {n, 1, 12}]
lo que da:
{0.5 + 14.5213 I, 0.5 + 20.6557 I, 0.5 + 25.4927 I, 0.5 + 29.7394 I,
0.5 + 33.6245 I, 0.5 + 37.2574 I, 0.5 + 40.7006 I, 0.5 + 43.994 I,
0.5 + 47.1651 I, 0.5 + 50.2337 I, 0.5 + 53.2144 I, 0.5 + 56.1189 I}
{0.5 + 14.1347 I, 0.5 + 21.022 I, 0.5 + 25.0109 I, 0.5 + 30.4249 I,
0.5 + 32.9351 I, 0.5 + 37.5862 I, 0.5 + 40.9187 I, 0.5 + 43.3271 I,
0.5 + 48.0052 I, 0.5 + 49.7738 I, 0.5 + 52.9703 I, 0.5 + 56.4462 I}
La Serie de x/LambertW es:
Series[x/LambertW[x], {x, 0, 7}]
\frac{x}{W(x)} = 1+x-\frac{x^2}{2}+\frac{2 x^3}{3}-\frac{9 x^4}{8}+\frac{32 x^5}{15}-\frac{625 x^6}{144}+\frac{324 x^7}{35}+O\left(x^8\right)
which has some similarity with a(n)
\frac{x}{W(x)} = \frac{(-1)^n n^n x^{n+1}}{(n+1)!}
a(n)=\frac{n^n}{n!}
\left\{\frac{1}{2},\frac{2}{3},\frac{9}{8},\frac{32}{15},\frac{625}{144},\frac{324}{35},\frac{117649}{5760},\frac{131072}{2835},\frac{4782969}{44800},\frac{1562500}{6237},\frac{25937424601}{43545600},\frac{35831808}{25025}\right\}
Is there a connection?
Edit 7.9.2013:
Would these sequences give more accurate power series approximations? Just a thought.
Clear[t, s, nn, m, k, n];
m = 1;
nn = 12;
t[n_, 1] = 1;
t[1, k_] = 1;
t[n_, k_] := t[n, k] = (1 - If[Mod[k, n] == 0, n, 0]);
MatrixForm[Table[Table[t[n, k], {k, 1, m*nn}], {n, 1, m*nn}]];
Print["here"]
Monitor[A =
Table[Limit[Zeta[s]*Sum[t[n, k]/k^(s - 1), {k, 1, m*n}],
s -> 1], {n, 1, nn}], n]
Clear[t, s, nn, m, k, n];
m = 2;
nn = 12;
t[n_, 1] = 1;
t[1, k_] = 1;
t[n_, k_] := t[n, k] = (1 - If[Mod[k, n] == 0, n, 0]);
MatrixForm[Table[Table[t[n, k], {k, 1, m*nn}], {n, 1, m*nn}]];
Print["here"]
Monitor[A =
Table[Limit[Zeta[s]*Sum[t[n, k]/k^(s - 1), {k, 1, m*n}],
s -> 1], {n, 1, nn}], n]
Clear[t, s, nn, m, k, n];
m = 3;
nn = 12;
t[n_, 1] = 1;
t[1, k_] = 1;
t[n_, k_] := t[n, k] = (1 - If[Mod[k, n] == 0, n, 0]);
MatrixForm[Table[Table[t[n, k], {k, 1, m*nn}], {n, 1, m*nn}]];
Print["here"]
Monitor[A =
Table[Limit[Zeta[s]*Sum[t[n, k]/k^(s - 1), {k, 1, m*n}],
s -> 1], {n, 1, nn}], n]
Clear[t, s, nn, m, k, n];
m = 4;
nn = 12;
t[n_, 1] = 1;
t[1, k_] = 1;
t[n_, k_] := t[n, k] = (1 - If[Mod[k, n] == 0, n, 0]);
MatrixForm[Table[Table[t[n, k], {k, 1, m*nn}], {n, 1, m*nn}]];
Print["here"]
Monitor[A =
Table[Limit[Zeta[s]*Sum[t[n, k]/k^(s - 1), {k, 1, m*n}],
s -> 1], {n, 1, nn}], n]
Clear[t, s, nn, m, k, n];
m = 5;
nn = 12;
t[n_, 1] = 1;
t[1, k_] = 1;
t[n_, k_] := t[n, k] = (1 - If[Mod[k, n] == 0, n, 0]);
MatrixForm[Table[Table[t[n, k], {k, 1, m*nn}], {n, 1, m*nn}]];
Print["here"]
Monitor[A =
Table[Limit[Zeta[s]*Sum[t[n, k]/k^(s - 1), {k, 1, m*n}],
s -> 1], {n, 1, nn}], n]
Edit 7.9.2013:
The connection I was looking for:
\sum _{n=1}^{\infty} \frac{x (-x)^n \exp \left(\lim_{s\to 1} \, \zeta (s) \sum _{k=1}^n \frac{1-\text{If}[k \bmod n=0,n,0]}{k^{s-1}}\right)}{n+1}+x+1 =1+x-\frac{x^2}{2}+\frac{2 x^3}{3}-\frac{9 x^4}{8}+\frac{32 x^5}{15}-\frac{625 x^6}{144}+\frac{324 x^7}{35}-\frac{117649 x^8}{5760}+\frac{131072 x^9}{2835}-\frac{4782969 x^{10}}{44800}+\frac{1562500 x^{11}}{6237}-\frac{25937424601 x^{12}}{43545600}+\frac{35831808 x^{13}}{25025}-...
1 + x + Sum[
x*(-x)^n*Exp[
Limit[Zeta[s]*
Sum[(1 - If[Mod[k, n] == 0, n, 0])/k^(s - 1), {k, 1, n}],
s -> 1]]/(n + 1), {n, 1, 12}]
Series[x/LambertW[x], {x, 0, 12}]
Edit 2.10.2013: Integration is better:
Clear[x, n, k, s, a1, nn, b1]
b1 = Expand[
Sum[Exp[Limit[
1/(s - 1)*
Sum[(1 - If[Mod[k, n] == 0, n, 0])/(k)^(s - 1), {k, 1, 4*n}],
s -> 1]]*(-x)^n, {n, 0, 32}]];
a1 = 1 + Integrate[b1, x];
x = N[(1 - 11/8)/Exp[1], 30];
Print["here"]
N[2*Pi*Exp[1]*a1, 30]
N[2*Pi*Exp[1]*x/LambertW[x], 30]
Clear[x, n, k, s, a1, nn]
a1 = 1 + Integrate[b1, x];
x = N[(2 - 11/8)/Exp[1], 30];
Print["here"]
N[2*Pi*Exp[1]*a1, 30]
N[2*Pi*Exp[1]*x/LambertW[x], 30]
where the number 4 within: {k, 1, 4*n}], can be varied for truncating the Dirichlet series for the logarithm of n. Al menos tan largo como el truncado de la serie de Dirichlet no obtener más de la potencia de serie, hay una tendencia para que los Zeta cero aproximaciones a permanecer cerca de la zeta ceros.
12.10.2013: Una mejor integración:
Clear[x, n, k, s, a1, nn, b1]
b1 = Expand[
Sum[Exp[Limit[
Zeta[s]*Sum[(1 - If[Mod[k, n] == 0, n, 0])/k^(s - 1), {k, 1,
n}], s -> 1]]*(-x)^n, {n, 1, 32}]];
a1 = 1 + Integrate[1 + b1, x];
x = N[(1 - 11/8)/Exp[1], 30];
Print["here"]
N[2*Pi*Exp[1]*a1, 30]
N[2*Pi*Exp[1]*x/LambertW[x], 30]
Clear[x, n, k, s, a1, nn]
a1 = 1 + Integrate[1 + b1, x];
x = N[(2 - 11/8)/Exp[1], 30];
Print["here"]
N[2*Pi*Exp[1]*a1, 30]
N[2*Pi*Exp[1]*x/LambertW[x], 30]
Esta Hoja de cálculo de Excel fórmula utiliza Andre LeClaire la fórmula para aproximar la zeta de Riemann de ceros:
=SI(O(FILA()=1; COLUMNA (A)=1);0; SI(FILA()>=COLUMNA();EXP(-(1-11/8/(COLUMNA (A)-1))/EXP(1)*SUMA(INDIRECTO(DIRECCION(FILA()-COLUMNA()+1; COLUMNA(); 4)&":"&DIRECCIÓN(FILA()-1; COLUMNA(); 4); 4)));0))
(European punto-punto y coma)
es necesario dividir el resultado con: /2/PI()/EXP(1) y tomar el recíproco.
tetration esto es.