$\newcommand{\ángulos}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\color{#f00}{\sum_{n = 1}^{\infty}{\pars{-1}^{n} \over \pars{2n + 1}3^{n}}} & =
\sum_{n = 1}^{\infty}\pars{-\,{1 \over 3}}^{n} \int_{0}^{1}x^{2n}\,\dd x =
\int_{0}^{1}\sum_{n = 1}^{\infty}\pars{-\,{x^{2} \over 3}}^{n}\,\dd x =
\int_{0}^{1}{-x^{2}/3 \over 1 - \pars{-x^{2}/3}}\,\dd x
\\[5mm] & =
-\pars{\int_{0}^{1}\,\dd x
- \root{3}\int_{0}^{\root{3}/3}{\dd x \over x^{2} + 1}} =
- 1 + \root{3}\arctan\pars{\root{3} \over 3}
\\[5mm] & = \color{#f00}{{\root{3} \over 6}\,\pi - 1} \approx -0.0931
\end{align}