La proposición 2.12: Vamos a $M, N$ $A$- módulos. Entonces existe un par de $(T, g)$ que consta de un $A$-módulos de $T$ e una $A$-mapeo bilineal $g : M \times N \to T$, con la siguiente propiedad:
Dado cualquier $A$-módulo de $P$ y cualquier $A$-mapeo bilineal $f : M \times N \to P$, no existe un único $A$-lineal de asignación de $f' : T \to P$ tal que $f = f' \circ g$ (en otras palabras, cada bilineal de la función en $M \times N$ factores a través de $T$).
Por otra parte, si $(T, g)$ $(T', g')$ son dos pares con esta propiedad, entonces existe un único isomorfismo $j : T \to T'$ tal que $j \circ g = g'$.
La proposición 2.18: Vamos a $$M' \xrightarrow f M \xrightarrow g M'' \to 0$$ be an exact sequence of $Un$-modules and homomorphisms, and let $N$ be any $Un$-module. Then the sequence $$M' \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow {g \otimes 1} M'' \otimes N \to 0$$ (where $1$ denotes the identity mapping on $$ N) es exacta.
La prueba de Ejercicio 2.2:
$\newcommand{im}{{\operatorname{im}}}$
Considere la posibilidad de $$ 0 \to \mathfrak a \xrightarrow i A \xrightarrow \pi A / \mathfrak a \to 0$$ where $i : \mathfrak un \a$ is the inclusion map: $x \mapsto x$, and $\pi : \a / \mathfrak un$ is the quotient map: $x \mapsto x + \mathfrak un$. This is a short exact sequence. By Proposition 2.18, $$\mathfrak a \otimes M \xrightarrow{i \otimes 1} A \otimes M \xrightarrow{\pi \otimes 1} (A/\mathfrak a) \otimes M \to 0$$ is exact. This means that $\ker \pi \oplus 1 = \im i \otimes 1$ and $\pi \otimes 1$ is surjective. By the fundamental theorem of module homomorphisms , $(A \otimes M) / \ker (\pi \otimes 1) \cong (A/\mathfrak a) \otimes M$. We show that $(A \otimes M) / \ker (\pi \otimes 1) \cong M/\mathfrak a M$.
Definir $f : A \times M \to M/\mathfrak aM$$(a, m) \mapsto am + \mathfrak aM$$g : A \times M \to A \otimes M$$(a, m) \mapsto a \otimes m$. Por la Proposición 2.12, no existe una única $f'$ tal que $f = f' \circ g$: $$%\xymatrix{A \times M \ar[r]^g \ar[dr]_{f} & A \otimes M \ar[d]^{f'}\\ & M / \mathfrak aM }$$ Observe that $f'$ is surjective, since given any $\overline m = m + \mathfrak aM \M/ \mathfrak aM$, we have $f'(1 \otimes m) = m + \mathfrak aM$. By the fundamental theorem of module homomorphisms, it follows that $\otimes M / \ker f' \cong M/ \mathfrak aM$.
Nos muestran que $\ker f' = \ker (\pi \otimes 1)$: Vamos a $\sum_{k = 1}^n a_k \otimes m_k \in \ker (\pi \otimes 1) = \im (i \otimes 1)$ y observar que $$f' \bigg( \sum_{k = 1}^n a_k \otimes m_k \bigg) = \sum_{k = 1}^n f'(a_k \otimes m_k) = \sum_{k = 1}^n a_k m_k + \mathfrak aM = 0$$ and therefore $\sum_{k = 1}^n a_k \otimes m_k \en \ker f'$. Hence we have $\ker(\pi \otimes 1) \subseteq \ker f'$. Let $x \in \ker f'$ and suppose, without loss of generality, that the element we chose is $1 \otimes m$ (we can do this since $\sum a_k \otimes m_k = 1 \otimes \sum a_k m_k$). Hence we have $f'(1 \otimes m) = 1\cdot m + \mathfrak aM = m + \mathfrak aM = 0$. Thus $m \in \mathfrak aM$, so $m = \sum_{k = 1}^n a_i m_i$ where $a_i \en \mathfrak un$ and $m_i \en M$. It follows immediately that $1 \otimes m = 1 \otimes \sum_{k = 1}^n a_k m_k = \sum_{k = 1}^n a_k \otimes m_k \en \im (i \otimes 1) = \ker (\pi \otimes 1)$. Hence we have $\ker f' \subseteq \ker (\pi \otimes 1)$ and thus $\ker f' = \ker (\pi \otimes 1)$.