$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{a \geq 1}$.
Hay un ${\sf\underline{straightforward}}$ respuesta:
\begin{align}&\color{#66f}{\large\left.\int_{0}^{1}\int_{0}^{1}\dd x\,\dd y\,
\right\vert_{\,\max\pars{x,y}\ >\ a\min\pars{x,y}}}
=\left.\int_{0}^{1}\int_{0}^{1}\dd x\,\dd y\,
\,\right\vert_{x\ <\ y \atop {\vphantom{\Large A}y\ >\ ax}} +
\left.\int_{0}^{1}\int_{0}^{1}\dd x\,\dd y
\,\right\vert_{x\ >\ y \atop {\vphantom{\Large A}x\ >\ ay}}
\\[5mm]&=\left.\int_{0}^{1}\int_{0}^{1}\dd x\,\dd y\,\right\vert_{\,x\ <\ y/a}
+\left.\int_{0}^{1}\int_{0}^{1}\dd y\,\dd x\,\right\vert_{\,y\ <\ a/x}
=2\int_{0}^{1}\int_{0}^{y/a}\,\dd x\,\dd y
=2\int_{0}^{1}{y \over a}\,\dd y=\color{#66f}{\Large{1 \over a}}
\end{align}