demostrar o refutar :
$$S=\dfrac{1}{1999}\binom{1999}{0}-\dfrac{1}{1998}\binom{1998}{1}+\dfrac{1}{1997}\binom{1997}{2}-\dfrac{1}{1996}\binom{1996}{3}+\cdots-\dfrac{1}{1000}\binom{1000}{999}=\dfrac{1}{1999}\left(w^{1999}_{1}+w^{1999}_{2}\right)$$ donde $$w_{1}=\dfrac{1+\sqrt{3}i}{2},w_{2}=\dfrac{1-\sqrt{3}i}{2}$$
Mi idea: ya que $$\dfrac{1}{1999-k}\binom{1999-k}{k}=\dfrac{1}{1999-k}\dfrac{(1999-k)!}{k!(1999-2k)!}=\dfrac{(1998-k)!}{k!(1999-2k)!}$$
Entonces yo no puedo,tal vez puede utilizar integral tratar de Gracias