$\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{i = 2}^{n}{H_{i} \over i + 1} & =
\sum_{i = 2}^{n}\braces{{1 \over 2}\bracks{\pars{H_{i} + {1 \over i + 1}}^{2} -
H_{i}^{2} - \pars{1 \over i + 1}^{2}}}
\\[5mm] & =
{1 \over 2}\sum_{i = 2}^{n}H_{i + 1}^{2} - {1 \over 2}\sum_{i = 2}^{n}H_{i}^{2} -
{1 \over 2}\sum_{i = 2}^{n}{1 \over \pars{i + 1}^{2}}
\\[5mm] & =
{1 \over 2}\sum_{i = 3}^{n + 1}H_{i}^{2} -
\bracks{{1 \over 2}\,H_{2}^{2} + {1 \over 2}\sum_{i = 3}^{n + 1}H_{i}^{2} -
{1 \over 2}\,H_{n + 1}^{2}} -
{1 \over 2}\sum_{i = 3}^{n + 1}{1 \over i^{2}}\quad
\pars{~\mbox{note that}\ {1 \over 2}\,H_{2}^{2} = {9 \over 8}~}
\\[5mm] & =
{1 \over 2}\,H_{n + 1}^{2} - {9 \over 8} -
\pars{-{1 \over 2} - {1 \over 8} + {1 \over 2}\sum_{i = 1}^{n + 1}{1 \over i^{2}}} =
\bbox[8px,border:1px groove navy]{{1 \over 2}\,H_{n + 1}^{2} - {1 \over 2} - {1 \over 2}\,H_{n + 1}^{\pars{2}}}
\end{align}