Estoy tratando de mostrar que la convergencia de la siguiente manera. $$\sum_{k \geq 1} \frac{\sigma^2_k}{k^2} < \infty \Rightarrow \lim_{M \rightarrow \infty}\frac{1}{M^2}\sum_{k \leq M} \sigma^2_k=0.$$
Consideremos $D_k = \sum_{n \geq k} \displaystyle\frac{\sigma_n^2}{n^2}$ para $k \geq 1$ y se observó que, para $k=1$ tenemos que:
$$D_1 = \sum_{n \geq 1} \frac{\sigma_n^2}{n^2} < \infty \text{(by hypothesis)}.$$
o este que me han demostrado que, a $\lim_{k \rightarrow \infty} D_k = \lim_{k \rightarrow \infty} \sum_{n \geq k} \frac{\sigma_n^2}{n^2} = 0$,
Ahora tenga en cuenta la siguiente:
\begin{eqnarray*} D_2 &=& \sum_{n \geq 2} \frac{\sigma_n^2}{n^2} = \frac{\sigma_2^2}{2^2} + \frac{\sigma_3^2}{3^2} + \frac{\sigma_4^2}{4^2} \ldots\nonumber \\ D_3 &=& \sum_{n \geq 3} \frac{\sigma_n^2}{n^2} = \frac{\sigma_3^2}{3^2} + \frac{\sigma_4^2}{4^2} \ldots \nonumber\\ D_4 &=& \sum_{n \geq 4} \frac{\sigma_n^2}{n^2} = \frac{\sigma_4^2}{4^2} \ldots \nonumber\\ &\vdots& \\ \lim_{k \rightarrow \infty} D_k &=& \sum_{n \geq k} \frac{\sigma_n^2}{n^2} = 0. \nonumber \end{eqnarray*}
entonces yo consideraba un $M$ tal que $M \geq 1$ y luego me vienen a la siguiente ecuación
$$\frac{1}{M^2}\sum_{k=1}^M \sigma^2_k = \frac{1}{M^2} \sum_{k=1}^M k^2\left(D_k - D_{k+1}\right).$$
He señalado en un libro en el cual se obtiene la siguiente desigualdad $$\sum_{n \geq k} \displaystyle\frac{\sigma^2_k}{k^2} = \frac{1}{M^2} \sum_{k=1}^M k^2 \left(D_k - D_{k+1}\right)\text{(How could justify this inequality?)} \leq \frac{1}{M^2} \sum_{k=1}^M (2k - 1)D_k$$
Es fácil ver que
\begin{eqnarray} \sum_{n \geq k} \displaystyle\frac{\sigma^2_k}{k^2} &=& D_k - D_{k+1}\nonumber \\ &=& \sum_{n \geq k} \displaystyle\frac{\sigma_n^2}{n^2} - \sum_{n \geq k+1} \displaystyle\frac{\sigma_n^2}{n^2} \nonumber \\ &=& \left\{\displaystyle\frac{\sigma_k^2}{k^2} + \displaystyle\frac{\sigma_{(k+1)}^2}{(k+1)^2} + \ldots \right\} - \left\{\displaystyle\frac{\sigma_{(k+1)}^2}{(k+1)^2} + \displaystyle\frac{\sigma_{(k+2)}^2}{(k+1)^2} + \ldots \right\}. \end{eqnarray}
donde $$\lim_{k \rightarrow \infty} \frac{1}{M^2} \sum_{k=1}^M (2k - 1)D_k = 0$$ pero no sé para justificar ese paso. Podría usted por favor me da una sugerencia sobre cómo justificar el último paso.
Muchas gracias, por tu ayuda.