Yo sé lo que la respuesta a esta pregunta, pero no estoy seguro de cómo la respuesta fue alcanzado y realmente me gustaría entenderlo! Estoy omitiendo el caso base porque no es relevante para mi pregunta.
Inductivo hipótesis:
$$\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \frac{1}{3\cdot4} + \dotsb + \frac{1}{n(n+1)} = \frac{n}{n+1}$$ is true when $n = k$ and $k > 1$
Por lo tanto: $$\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \frac{1}{3\cdot4} + \dotsb + \frac{1}{k(k+1)} = \frac{k}{k+1}$$
Inductivo paso:
Demostrar que $$\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \frac{1}{3\cdot4} + \dotsb + \frac{1}{k(k+1)} = \frac{k+1}{k+1+1} = \frac{k+1}{k+2}$$
$$\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \frac{1}{3\cdot4} + \dotsb + \frac{1}{k(k+1)} = \left[\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \frac{1}{3\cdot4} + \dotsb + \frac{1}{k(k+1)}\right] + \frac{1}{(k+1)(k+2)}$$
$$\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \frac{1}{3\cdot4} + \dotsb + \frac{1}{k(k+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$
$$\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \frac{1}{3\cdot4} + \dotsb + \frac{1}{k(k+1)} = \frac{k+1}{k+2}$$
Lo estoy confundido es que el $\frac{1}{(k+1)(k+2)}$ proviene de que en la primera línea de el paso inductivo. Por favor alguien puede explicar esto un poco más en detalle? La fuente de la respuesta explica como "romper el último término de la suma", pero estoy claro en lo que significa.