$$\int_C \frac{z+1}{z^2-2z} dz$$ for the circle of $ \ lvert z \ rvert = 3$. Poles are obviously at $ z = {0,2}$. Can I calculate the residues by viewing the fraction in the integral as either $$\int_C \frac{\frac{z+1}{z}}{z-2} dz $$$$ \ int_C \ frac {\ frac {z +1} {z-2}} {z} dz$$ and plug into 2 and 0 into those numerators respectively? That would yield a final answer of $ 2 \ pi i * (\ frac {3} {2} + \ frac {1} {- 2}) = \ pi i ps
¿Esto se ve bien? Soy nuevo en residuos y quiero asegurarme de estar en el camino correcto.