Si $a \in \mathbb{R}$ , evalúe $$ \lim_{n \to \infty}\left(\begin{matrix} 1&\frac{a}{n}\\\frac{-a}{n}&1\end{matrix}\right)^{n}$$
Mi intento: Dejemos que $$A = \left(\begin{matrix} 0&a\\-a&0\end{matrix}\right) = -a\left(\begin{matrix} \cos(\frac{\pi}{2})&-\sin(\frac{\pi}{2})\\\sin(\frac{\pi}{2})&\cos(\frac{\pi}{2})\end{matrix}\right)$$ para que $$A^k = (-a)^k \left(\begin{matrix} \cos(\frac{k\pi}{2})&-\sin(\frac{k\pi}{2})\\\sin(\frac{k\pi}{2})&\cos(\frac{k\pi}{2})\end{matrix}\right)$$
Así, \begin{align}\displaystyle \lim_{n \to \infty}\left(\begin{matrix} 1&\dfrac{a}{n}\\\dfrac{-a}{n}&1\end{matrix}\right)^{n} &==Displaystyle \\Nlim_{n \\_infty} \left(I+\dfrac{A}{n}\right)^n =e^A=\displaystyle \sum_{k=0}^{\infty}\dfrac{A^k}{k!}\\&= \sum_{k=0}^{\infty} \N - Izquierda( \begin{matrix} \dfrac{(-a)^k\cos(\frac{k\pi}{2})}{k!}&-\dfrac{(-a)^k\sin(\frac{k\pi}{2})}{k!}\\\dfrac{(-a)^k\sin(\frac{k\pi}{2})}{k!}&\dfrac{(-a)^k\cos(\frac{k\pi}{2})}{k!}\end{matrix} \(derecho) \N - fin {align}
y como $\displaystyle \sum_{k=0}^{\infty}\dfrac{(-a)^k\cos(\frac{k\pi}{2})}{k!}=1+0-\dfrac{a^2}{2!}+0+\dfrac{a^4}{4!}+\cdots= \cos a$ y
$\displaystyle \sum_{k=0}^{\infty}\dfrac{(-a)^k\sin(\frac{k\pi}{2})}{k!}=0-a+0+\dfrac{a^3}{3!}+0-\dfrac{a^5}{5!}+\cdots= -\sin a$ por lo que la respuesta requerida es
$\left(\begin{matrix} \cos a&\sin a\\-\sin a&\cos a\end{matrix}\right).$
Sin embargo, la respuesta anterior no coincide con las opciones proporcionadas, que son $I, 0$ y ninguna de las anteriores. Así que mi pregunta es: ¿es correcta mi respuesta?
2 votos
Su resultado es correcto.