$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}
&\sum_{k = 0}^{n - 1}{1 \over {n \choose k}\pars{n - k}}
=\sum_{k = 0}^{n - 1}{k!\pars{n - k - 1}! \over n!}
=\sum_{k = 0}^{n - 1}{\Gamma\pars{k + 1}\Gamma\pars{n - k}! \over \Gamma\pars{n + 1}}
=\sum_{k = 0}^{n - 1}{\rm B}\pars{k + 1,n - k}
\end{align}
donde
$\ds{{\rm B}\pars{x,y} \equiv \int_{0}^{1}t^{x - 1}\pars{1 - t}^{y - 1}\,\dd t
={\Gamma\pars{x}\Gamma\pars{y} \\Gamma\pars{x + y}}}$ is the Beta Function. $\ds{\Re\pars{x},\Re\pars{y} > 0}$. $\ds{\Gamma\pars{z}}$ es la
La Función Gamma.
\begin{align}
&\sum_{k = 0}^{n - 1}{1 \over {n \choose k}\pars{n - k}}
=\sum_{k = 0}^{n - 1}\int_{0}^{1}t^{k}\pars{1 - t}^{n - k - 1}\,\dd t
=\int_{0}^{1}\pars{1 - t}^{n - 1}\sum_{k = 0}^{n - 1}\pars{t \over 1 - t}^{k}\,\dd t
\\[3mm]&=\int_{0}^{1}\pars{1 - t}^{n - 1}\,
{\bracks{t/\pars{1 - t}}^{n} - 1 \over t/\pars{1 - t} - 1}\,\dd t
=\int_{0}^{1}{t^{n} - \pars{1 - t}^{n} \over 2t - 1}\,\dd t
\\[3mm]&=\int_{-1}^{1}
{\bracks{\pars{1 + t}/2}^{n} - \bracks{\pars{1 - t}/2}^{n} \over t}\,{\dd t \over 2}
={1 \over 2^{n}}\int_{0}^{1}
{\pars{1 + t}^{n} - \pars{1 - t}^{n} \over t}\,\dd t
\\[3mm]&=-\,{n \over 2^{n}}\bracks{%
\color{#00f}{\int_{0}^{1}\ln\pars{t}\pars{1 + t}^{n - 1}\,\dd t}
+ \color{#c00000}{\int_{0}^{1}\ln\pars{t}\pars{1 - t}^{n -1}\,\dd t}}
\end{align}
$$
\color{#00f}{\int_{0}^{1}\ln\pars{t}\pars{1 + t}^{n - 1}\,\dd t}
=\ _{4}{\rm F}_{2}\pars{1,1,1,-n;2,2;-1}
$$
$\ds{_{p}{\rm F}_{q}\pars{a_{1},\ldots,a_{p};b_{1},\ldots,b_{q},z}}$ es la
Función Hipergeométrica Generalizada.
$$
\color{#c00000}{\int_{0}^{1}\ln\pars{t}\pars{1 - t}^{n -1}\,\dd t}
=-\,{H_{n} \over n}
$$
$\ds{H_{n}}$ es la
$n$-ésimo Número Armónico.
$$\color{#00f}{\large%
\sum_{k = 0}^{n - 1}{1 \over {n \elegir k}\pars{n - k}}
={1 \over 2^{n}}\bracks{H_{n} n\ _{4}{\rm F}_{2}\pars{1,1,1,-n;2,2;-1}}}
$$