... Continuación:
Una lista de soluciones para ciertos $(\alpha,\beta)$, $k$:
\begin{array}{|c|l|c|}
\hline
(\alpha, \beta), \; k & (n_1, \ldots, n_k) & n_1+\ldots+n_k \\
\hline \color{#003388}{(\alpha,\beta)=(4,3), \; k=1}
& \color{#CC3300}{1} & \color{#CC3300}{1} \\
\hline \color{#003388}{(\alpha,\beta)=(4,3), \; k=2}
& \color{#CC3300}{(4,4)} & \color{#CC3300}{8} \\
\hline \color{#003388}{(\alpha,\beta)=(4,3), \; k=3}
& \color{#CC3300}{(9,9,9)} & \color{#CC3300}{27} \\
\hline \color{#003388}{(\alpha,\beta)=(4,3), \; k=4}
& (7,14,14,14) & 49 \\
& \color{#CC3300}{(16,16,16,16)} & \color{#CC3300}{64} \\
\hline \color{#003388}{(\alpha,\beta)=(4,3), \; k=5}
& (5,15,15,20,20) & 75 \\
& (6,7,12,15,19) & 59 \\
& \color{#CC3300}{(25,25,25,25,25)} & \color{#CC3300}{125} \\
\hline \color{#003388}{(\alpha,\beta)=(4,3), \; k=6}
& (2,2,2,8,8,14) & 36 \\
& (2,9,14,21,22,23) & 91 \\
& (3,3,7,13,16,19) & 61 \\
& (4,5,6,11,13,20) & 59 \\
& (28,32,32,32,36,40) & 200 \\
& \color{#CC3300}{(36,36,36,36,36,36)} & \color{#CC3300}{216} \\
\hline \color{#003388}{(\alpha,\beta)=(4,3), \; k=7}
& (1,1,2,4,7,14,14) & 43 \\
& (1,2,11,14,17,20,26) & 91 \\
& (1,5,6,6,11,11,21) & 61 \\
& (1,8,12,22,23,28,29) & 123 \\
& (1,22,23,26,29,33,39) & 173 \\
& (2,2,4,12,12,14,22) & 68 \\
& (2,14,14,14,23,23,33) & 123 \\
& (3,11,18,21,26,27,35) & 141 \\
& (3,18,21,27,30,36,36) & 171 \\
& (4,12,14,14,14,28,30) & 116 \\
& (5,7,15,23,23,31,31) & 135 \\
& (5,9,16,20,26,30,33) & 139 \\
& (5,10,11,19,23,24,33) & 125 \\
& (6,7,18,21,25,31,33) & 141 \\
& (6,12,21,32,32,33,35) & 171 \\
& (6,16,16,18,24,34,34) & 148 \\
& (7,7,9,9,12,22,27) & 93 \\
& (7,8,8,8,9,10,25) & 75 \\
& (7,9,9,9,17,23,29) & 103 \\
& (8,11,24,25,32,34,37) & 171 \\
& (9,9,16,17,19,20,35) & 125 \\
& (9,10,22,24,26,32,38) & 161 \\
& (9,12,24,24,30,33,39) & 171 \\
& (10,19,30,33,33,37,43) & 205 \\
& (10,21,21,22,24,31,42) & 171 \\
& (10,21,33,36,39,40,40) & 219 \\
& (13,16,17,26,27,33,41) & 173 \\
& (13,16,19,22,27,37,39) & 173 \\
& (13,17,20,22,24,34,41) & 171 \\
& (13,21,31,35,38,39,44) & 221 \\
& (15,20,24,25,26,32,45) & 187 \\
& (17,17,25,30,33,39,44) & 205 \\
& (17,18,22,31,33,38,44) & 203 \\
& (18,19,24,24,26,38,44) & 193 \\
& (18,26,37,40,41,42,47) & 251 \\
& (19,20,29,31,36,39,47) & 221 \\
& (21,21,25,28,41,41,44) & 221 \\
& (21,28,36,39,39,39,51) & 253 \\
& (22,27,32,36,40,47,47) & 251 \\
& (22,30,30,44,44,44,46) & 260 \\
& (25,25,29,30,35,44,49) & 237 \\
& (25,33,35,40,41,42,53) & 269 \\
& (27,36,37,39,46,46,52) & 283 \\
& \color{#CC3300}{(49,49,49,49,49,49,49)} & \color{#CC3300}{343} \\
\hline
\hline \color{#003388}{(\alpha,\beta)=(5,4), \; k=1}
& \color{#CC3300}{1} & \color{#CC3300}{1} \\
\hline \color{#003388}{(\alpha,\beta)=(5,4), \; k=2}
& \color{#CC3300}{(8,8)} & \color{#CC3300}{8} \\
\hline \color{#003388}{(\alpha,\beta)=(5,4), \; k=3}
& \color{#CC3300}{(27,27,27)} & \color{#CC3300}{27} \\
\hline \color{#003388}{(\alpha,\beta)=(5,4), \; k=4}
& (22,22,33,44) & 121 \\
& (50,50,60,65) & 225 \\
& \color{#CC3300}{(64,64,64,64)} & \color{#CC3300}{256} \\
\hline \color{#003388}{(\alpha,\beta)=(5,4), \; k=5}
& (36,36,36,36,72) & 216 \\
& \color{#CC3300}{(125,125,125,125,125)} & \color{#CC3300}{625} \\
\hline \color{#003388}{(\alpha,\beta)=(5,4), \; k=6}
& (1,3,14,21,22,39) & 100 \\
& (3,57,81,96,99,114) & 450 \\
& (4,45,57,90,91,98) & 385 \\
& (5,5,40,45,57,68) & 220 \\
& (7,60,80,85,85,118) & 435 \\
& (10,25,41,55,55,84) & 270 \\
& (14,31,36,44,44,81) & 250 \\
& (16,56,64,64,88,112) & 400 \\
& (18,36,45,72,81,99) & 351 \\
& (21,38,45,75,92,99) & 370 \\
& (25,60,85,115,115,125) & 525 \\
& (30,35,52,77,88,108) & 390 \\
& (30,81,113,115,138,139) & 616 \\
& (34,68,80,110,112,136) & 540 \\
& (35,45,55,75,75,115) & 400 \\
& (36,40,68,82,112,113) & 451 \\
& \color{#CC3300}{(216,216,216,216,216,216)} & \color{#CC3300}{1296} \\
\hline
\end{array}