Deje $a_n$ ser una secuencia de positivos reales, de tal manera que las sumas parciales $S_n = \sum_{i = 1} ^ n a_i$ divergen a $\infty$. Por $\epsilon > 0$ do tenemos $$\sum_{n = 1} ^ \infty \frac{a_n}{S_n^{1 + \epsilon}} < \infty?$$
Para $\epsilon \ge 1$ podemos resolver esto rápidamente señalando $$\frac{a_n}{S_n ^ 2} \le \frac 1 {S_{n - 1}} - \frac 1 {S_n}$$ so for sufficiently large $n$ we can bound $\frac{a_n}{S_n^{1 + \epsilon}}$ by $\frac 1 {S_{n - 1}} - \frac 1 {S_n}$ as well. I'm wondering if this is true for arbitrary $\epsilon > 0$. I know that the series in question diverges for $ \epsilon = 0$, so all that is missing is what happens in $(0, 1)$.