En realidad pertenece a un Emden-Fowler ecuación.
En primer lugar, de acuerdo a http://eqworld.ipmnet.ru/en/solutions/ode/ode0302.pdf o http://www.ae.illinois.edu/lndvl/Publications/2002_IJND.pdf#page=6 , todos los Emden-Fowler ecuaciones pueden ser transformados en Abel ecuación de la segunda clase.
Deje $\begin{cases}u=\dfrac{x^3}{y_n^\frac{3}{2}}\\v=\dfrac{x}{y_n}\dfrac{dy_n}{dx}\end{cases}$ ,
A continuación, $\dfrac{dv}{du}=\dfrac{\dfrac{dv}{dx}}{\dfrac{du}{dx}}=\dfrac{\dfrac{x}{y_n}\dfrac{d^2y_n}{dx^2}+\dfrac{1}{y_n}\dfrac{dy_n}{dx}-\dfrac{x}{y_n^2}\left(\dfrac{dy_n}{dx}\right)^2}{\dfrac{3x^2}{y_n^\frac{3}{2}}-\dfrac{3x^3}{2y_n^\frac{5}{2}}\dfrac{dy_n}{dx}}=\dfrac{\dfrac{x}{y_n}\dfrac{d^2y_n}{dx^2}+\dfrac{v}{x}-\dfrac{v^2}{x}}{\dfrac{3u}{x}-\dfrac{3uv}{2x}}=\dfrac{\dfrac{x^2}{y_n}\dfrac{d^2y_n}{dx^2}+v-v^2}{3u\left(1-\dfrac{v}{2}\right)}$
$3u\left(1-\dfrac{v}{2}\right)\dfrac{dv}{du}=\dfrac{x^2}{y_n}\dfrac{d^2y_n}{dx^2}+v-v^2$
$\dfrac{x^2}{y_n}\dfrac{d^2y_n}{dx^2}=3u\left(1-\dfrac{v}{2}\right)\dfrac{dv}{du}+v^2-v$
$\dfrac{d^2y_n}{dx^2}=\dfrac{y_n}{x^2}\left(3u\left(1-\dfrac{v}{2}\right)\dfrac{dv}{du}+v^2-v\right)$
$\therefore\dfrac{y_n}{x^2}\left(3u\left(1-\dfrac{v}{2}\right)\dfrac{dv}{du}+v^2-v\right)-\dfrac{nx}{\sqrt{y_n}}=0$
$\dfrac{y_n}{x^2}\left(3u\left(1-\dfrac{v}{2}\right)\dfrac{dv}{du}+v^2-v\right)=\dfrac{nx}{\sqrt{y_n}}$
$3u\left(1-\dfrac{v}{2}\right)\dfrac{dv}{du}+v^2-v=\dfrac{nx^3}{y_n^\frac{3}{2}}$
$3u\left(1-\dfrac{v}{2}\right)\dfrac{dv}{du}+v^2-v=nu$
$3u\left(\dfrac{v}{2}-1\right)\dfrac{dv}{du}=v^2-v-nu$
Deje $w=\dfrac{v}{2}-1$ ,
A continuación, $v=2w+2$
$\dfrac{dv}{du}=2\dfrac{dw}{du}$
$\therefore6uw\dfrac{dw}{du}=(2w+2)^2-(2w+2)-nu$
$6uw\dfrac{dw}{du}=4w^2+6w+2-nu$
$w\dfrac{dw}{du}=\dfrac{2w^2}{3u}+\dfrac{w}{u}+\dfrac{2-nu}{6u}$
De hecho, todos los Abel la ecuación de la segunda clase puede ser transformado en Abel ecuación de la primera clase.
Deje $w=\dfrac{1}{z}$ ,
A continuación, $\dfrac{dw}{du}=-\dfrac{1}{z^2}\dfrac{dz}{du}$
$\therefore-\dfrac{1}{z^3}\dfrac{dz}{du}=\dfrac{2}{3uz^2}+\dfrac{1}{uz}+\dfrac{2-nu}{6u}$
$\dfrac{dz}{du}=\dfrac{(nu-2)z^3}{6u}-\dfrac{z^2}{u}-\dfrac{2z}{3u}$
Por favor, siga el método en http://www.hindawi.com/journals/ijmms/2011/387429/#sec2.