La transformada de Fourier de $y\left(x,t\right)$ a partir del tiempo al dominio de la frecuencia está dada por $Y\left(x,\omega\right)=\int_{-\infty}^{\infty}y\left(x,t\right)e^{i\omega t}dt$ y satisface la siguiente ecuación diferencial:
$$
EI\frac{\partial^{4}Y\left(x,\omega\right)}{\partial x^{4}}+\mu\left(i\omega\right)^{2}Y\left(x,\omega\right)=\int_{-\infty}^{\infty}P\delta\left(x-u\left(t\right)\right)e^{i\omega t}dt
$$
Ahora, el uso de esta propiedad de la función delta:
$$
\delta\left(g\left(s\right)\right)=\sum_{i}\frac{\delta\left(s-s_{i}\right)}{\left|g'\left(s_{i}\right)\right|}
$$
donde $s_{i}$ son las raíces de la función, por lo que el $g\left(s_{i}\right)=0$.
$$
\int_{-\infty}^{\infty}P\delta\left(g\left(t\right)\right)e^{i\omega t}dt=\int_{-\infty}^{\infty}P\sum_{i}\frac{\delta\left(t-t_{i}\right)}{\left|g'\left(t_{i}\right)\right|}e^{i\omega t}dt=P\sum_{i}\frac{e^{i\omega t_{i}}}{\left|g'\left(t_{i}\right)\right|}
$$
Entonces tenemos:
$$
\frac{\partial^{4}Y\left(x,\omega\right)}{\partial x^{4}}-\frac{\mu\omega^{2}}{EI}Y\left(x,\omega\right)=\frac{P}{EI}\sum_{i}\frac{e^{i\omega t_{i}}}{\left|g'\left(t_{i}\right)\right|}
$$
La función de Green de la solución a esta ecuación es:
$$
Y\left(x,\omega\right)=\int_{-\infty}^{\infty}\frac{P}{EI}\sum_{i}\frac{e^{i\omega t_{i}}}{\left|g'\left(t_{i}\right)\right|}G\left(x,x'\right)dx'
$$
El Verde de la función satisface la ecuación:
$$
\frac{\partial^{4}G\left(x,x'\right)}{\partial x^{4}}-\psi^{4}G\left(x,x'\right)=\delta\left(x-x'\right)
$$
Ahora tenemos que invertir la transformada de Fourier.
$$
y\left(x,t\right) = \frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\frac{P}{EI}\sum_{i}\frac{e^{i\omega t_{i}}}{\left|g'\left(t_{i}\right)\right|}G\left(x,x'\right)e^{-i\omega t}dx d\omega
=$$ $$a=\frac{P}{EI}\sum_{i}\left\ { \frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\frac{1}{\left|g'\left(t_{i}\right)\right|}G\left(x,x'\right)e^{i\omega\left(t_{i}-t\right)}dx'd\omega\right\}
=$$ $$=\frac{P}{EI}\sum_{i}\frac{1}{\left|g'\left(t_{i}\right)\right|}\int_{-\infty}^{\infty}G\left(x,x'\right)\delta\left(t-t_{i}\right)dx'
$$
Donde la definición: $\delta\left(t-t'\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\omega\left(t-t'\right)}d\omega$, ha sido utilizado. Así, esto es para un general $g\left(t\right)$. Ahora, si $g\left(t\right)=x-vt$, entonces:
$$
y\left(x,t\right) = \frac{P}{EI}\frac{1}{v}\int_{-\infty}^{\infty}G\left(x,x'\right)\delta\left(t-\frac{x}{v}\right)dx'
= \frac{P}{EI}G\left(x,vt\right)
$$
No sé por qué el papel no tiene la $EI$ factor.