Encuentre $\displaystyle \lim_{h \to 0} \frac{e^{h^2}-1}{h}$
$\displaystyle \lim_{h \to 0} \frac{e^{h^2}-1}{h} =\lim_{h \to 0} \frac{e^{(h+x)^2}-e^{x^2}}{h}\bigg|_{x=0} = \left(e^{x^2}\right)'\bigg|_{x=0} = 2 \cdot 0 \cdot e^0 = 0. $
¿Es esto correcto?