Es bastante fácil demostrar que las funciones armónicas satisfacen la propiedad del valor medio, pero parece más difícil demostrar lo contrario. He visto el siguiente teorema sin pruebas:
Si $u \in C(\Omega)$ cumple $$u(z) = \frac{1}{|\partial B_r(z) |} \int_{\partial B_r(z)} u\,dS$$ for all $z \in \Omega$ y $B_r(z) \subset \Omega$ y $u \in C^\infty$ $u$ es armónica en $\Omega$.
Cuando intento probarme a mí mismo, me quedé pegado. ¿Podría alguien amablemente me muestran cómo demostrarlo? Gracias.