Claramente no puede examinar la exactitud de la suma por poner unos números en ella.
$$\begin{array}{l}\sum\limits_i {{x_i}} {y_i}\left( {\begin{array}{*{20}{c}} = \\ \ne \end{array}} \right)\sum\limits_i {{x_i}} \sum\limits_i {{y_i}} \\{x_1} = 1,{x_2} = 2,{x_3} = 3;\\{y_1} = 4,{y_2} = 5,{y_3} = 6;\\\sum\limits_i {{x_i}} {y_i} = {x_1}{y_1} + {x_2}{y_2} + {x_3}{y_3} = 1 \times 4 + 2 \times 5 + 3 \times 6 = 32\\\left. {\begin{array}{*{20}{c}}{\sum\limits_i {{x_i}} = {x_1} + {x_2} + {x_3} = 1 + 2 + 3 = 6}\\{\sum\limits_i {{y_i}} = {y_1} + {y_2} + {y_3} = 4 + 5 + 6 = 15}\end{array}} \right| \Rightarrow \sum\limits_i {{x_i}} \sum\limits_i {{y_i}} = 90\\\left( {\sum\limits_i {{x_i}} {y_i} = 32} \right) \ne \left( {\sum\limits_i {{x_i}} \sum\limits_i {{y_i}} = 90} \right)\end{array}$$