Considerando $$f(x) =1+\sum_{n=1}^{\infty}\left(\frac{1\cdot 5\cdots (4n-3)}{4\cdot 8\cdots (4n)}\right)^{4}x^{n}$$
$$\frac{1\cdot 5\cdots (4n-3)}{4\cdot 8\cdots (4n)}=\frac{\Gamma \left(n+\frac{1}{4}\right)}{\Gamma \left(\frac{1}{4}\right) \Gamma
(n+1)}$$ y, gracias a un CAS,
$$f(x)=\, _4F_3\left(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4};1,1,1;x\right)$ $ ,
$$g(x)=1+\sum_{n=1}^{\infty}(8n+1)\left(\frac{1\cdot 5\cdots (4n-3)}{4\cdot 8\cdots (4n)}\right)^{4}x^n$$ escribir
$$g(x)=\,
_4F_3\left(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4};1,1,1;x\right)+\frac{x}
{32} \,
_4F_3\left(\frac{5}{4},\frac{5}{4},\frac{5}{4},\frac{5}{4};2,2,2;x\right)$$
Editar
Acaba de salir de la curioisity, considerando $$a_n=\frac{\Gamma \left(n+\frac{1}{4}\right)}{\Gamma \left(\frac{1}{4}\right) \Gamma
(n+1)}$$ eché un vistazo a las funciones de
$$f_k(x)=1+\sum_{n=1}^{\infty} a_n^k\, x^n$$ y sus derivados (probablemente trivial) la siguiente
$$f_2(x)=\, _2F_1\left(\frac{1}{4},\frac{1}{4};1;x\right)$$
$$f_3(x)=\, _3F_2\left(\frac{1}{4},\frac{1}{4},\frac{1}{4};1,1;x\right)$$
$$f_4(x)=\, _4F_3\left(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4};1,1,1;x\right)$$
$$f_5(x)=\,
_5F_4\left(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4};1,1,1,1;x
\right)$$ y así sucesivamente.
Del mismo modo
$$f_2'(x)=\frac{1}{16} \, _2F_1\left(\frac{5}{4},\frac{5}{4};2;x\right)$$
$$f_3'(x)=\frac{1}{64} \, _3F_2\left(\frac{5}{4},\frac{5}{4},\frac{5}{4};2,2;x\right)$$
$$f_4'(x)=\frac{1}{256} \,
_4F_3\left(\frac{5}{4},\frac{5}{4},\frac{5}{4},\frac{5}{4};2,2,2;x\right)$$
$$f_5'(x)=\frac{1}{1024}\,
_5F_4\left(\frac{5}{4},\frac{5}{4},\frac{5}{4},\frac{5}{4},\frac{5}{4};2,2,2,2;x
\right)$$
Para $x=1$
$$f_2(1)=\frac{\Gamma \left(\frac{1}{4}\right)}{\sqrt{2 \pi } \Gamma
\left(\frac{3}{4}\right)}$$
$$f_3(1)=\frac{\sqrt{\pi }}{\sqrt[4]{2} \Gamma \left(\frac{3}{4}\right) \Gamma
\left(\frac{7}{8}\right)^2}$$ pero, por cierto, no he de ser capaz de identificar los términos siguientes.