$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} I & \equiv \int_{0}^{1}{\ln^{3}\pars{1 - x} \over x}\,\dd x \,\,\,\stackrel{x\ \mapsto\ 1 - x}{=}\,\,\, \int_{0}^{1}{\ln^{3}\pars{x} \over 1 - x}\,\dd x \\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\, \int_{0}^{1}\ln\pars{1 - x}\bracks{3\ln^{2}\pars{x} \,{1 \over x}}\dd x = -3\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{x} \,\dd x \\[5mm] &\ \pars{~\substack{\ds{\mrm{Li}_{s}:\ PolyLogarithm\ Function\,,\quad \mrm{Li}_{s}\pars{0} = 0}\\[2mm] \ds{\mrm{Li}_{s + 1}'\pars{z} = {\mrm{Li}_{s}\pars{z} \over z}\,,\quad\mrm{Li}_{1}\pars{z} = -\ln\pars{1 - z}}}~} \\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\, 3\int_{0}^{1}\mrm{Li}_{2}\pars{x}\bracks{2\ln\pars{x}\,{1 \over x}}\,\dd x = 6\int_{0}^{1}\mrm{Li}_{3}'\pars{x}\ln\pars{x}\,\dd x \\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\, -6\int_{0}^{1}\mrm{Li}_{3}\pars{x}\,{1 \over x}\,\dd x = -6\int_{0}^{1}\mrm{Li}_{4}'\pars{x}\,\dd x = -6\,\mrm{Li}_{4}\pars{1} \\[5mm] & = -6\ \underbrace{\zeta\pars{4}}_{\ds{\pi^{4} \over 90}} \qquad\qquad\qquad\pars{~\substack{\ds{\zeta:\ Riemann\ Zeta\ Function}\\[2mm] \ds{\mrm{Li}_{s}\pars{1} = \zeta\pars{s}}}~} \\[5mm] & = \bbx{-\,{\pi^{4} \over 15}} \\ & \end{align}