Enfoque diferente
Tenemos
$$S=\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^3}=-\frac12\int_0^1\frac{\ln^2x\ln(1+x)}{x(1+x)}\ dx$$ $$=\frac12\underbrace{\int_0^1\frac{\ln^2x\ln(1+x)}{1+x}\ dx}_{I}-\frac12\underbrace{\int_0^1\frac{\ln^2x\ln(1+x)}{x}\ dx}_{\frac74\zeta(4)}$$
Para $I$, comenzamos con la identidad algebraica $$a^2b=\frac13a^3-\frac13b^3+ab^2-\frac13(a-b)^3$$
donde si establecemos $a=\ln x$ y $b=\ln(1+x)$ obtenemos
$$I=\int_0^1\frac{\ln^2x\ln(1+x)}{1+x}\ dx$$ $$=\frac13\underbrace{\int_0^1\frac{\ln^3x}{1+x}\ dx}_{I_1}-\frac13\underbrace{\int_0^1\frac{\ln^3(1+x)}{1+x}\ dx}_{I_2}+\underbrace{\int_0^1\frac{\ln x\ln^2(1+x)}{1+x}\ dx}_{I_3}-\frac13\underbrace{\int_0^1\frac{\ln^3\left(\frac{x}{1+x}\right)}{1+x}\ dx}_{I_4}$$
$$I_1=\sum_{n=1}^\infty(-1)^{n-1}\int_0^1 x^{n-1}\ln^3x\ dx=6\sum_{n=1}^\infty\frac{(-1)^n}{n^4}=-\frac{21}4\zeta(4)$$
$$I_2=\frac14\ln^42$$
$$I_3\overset{IBP}{=}-\frac13\int_0^1\frac{\ln^3(1+x)}{x}\ dx=2\operatorname{Li}_4\left(\frac{1}{2}\right)-\frac12\zeta(4)+\frac74\ln2\zeta(3)-\frac12\ln^22\zeta(2)+\frac1{12}\ln^42$$
Donde el último resultado se sigue del uso de la generalización
$$\int_0^1\frac{\ln^n(1+x)}{x}\ dx=\frac{\ln^{n+1}(2)}{n+1}+n!\zeta(n+1)+\sum_{k=0}^n k!{n\choose k}\ln^{n-k}(2)\operatorname{Li}_{k+1}\left(\frac12\right)$$
Para $I_4$, dejamos $\frac{x}{1+x}\to x$
$$I_4=\int_0^{1/2}\frac{\ln^3x}{1-x}\ dx=-6\operatorname{Li}_4\left(\frac{1}{2}\right)-\frac{21}4\ln2\zeta(3)+\frac32\ln^22\zeta(2)-\frac1{12}\ln^42$$
lo cual se sigue del uso de la generalización
$$\int_0^{1/2}\frac{\ln^n x}{1-x}\ dx=-\sum_{k=0}^n{n\choose k}(-\ln(2))^{n-k}(-1)^k k!\operatorname{Li}_{k+1}\left(\frac12\right)$$
la cual se puede encontrar en el mismo enlace de arriba (ver $(3)$).
Combinando estos resultados obtenemos
$$I=4\operatorname{Li_4}\left(\frac12\right)-\frac{15}4\zeta(4)+\frac72\ln2\zeta(3)-\ln^22\zeta(2)+\frac{1}{6}\ln^42$$
Dándonos
$$S=2\operatorname{Li_4}\left(\frac12\right)-\frac{11}4\zeta(4)+\frac74\ln2\zeta(3)-\frac12\ln^22\zeta(2)+\frac{1}{12}\ln^42$$
1 votos
Tu problema es un caso especial de uno de estos casos generales.
0 votos
Lo más importante es que $a_h(1,3)$ y $a_h(2,2)$ no se evalúan en el hilo. Sin embargo, creo que es útil.
0 votos
$ A(2,2)\sim0.6563115516 $.
0 votos
Creo que estás evaluando $\sum_{n=1}^{\infty}\frac{H^2(-1)^{n-1}}{n^2}$ lo cual es diferente al $ \sum_{n=1}^{\infty}\frac{H^{(2)}(-1)^{n-1}}{n^2}$