La respuesta correcta es de 31 minutos. Esto es muy común de rompecabezas de la pregunta que ha sido incluido en varios libros sobre juegos de ingenio, y un par de mini juegos se basan también en este rompecabezas.
El truco básico aquí es que el 1, el más rápido, idealmente debe cruzar el puente con cada uno de los otros, de modo que traer de vuelta a la lámpara que tomará mucho menos tiempo. Sin embargo, la importante captura aquí es que los dos más lento personas(8 y 9) siempre debe cruzar juntos, con uno de los más rápidos a la gente esperando en el otro lado para llevar la lámpara de nuevo. Esto es debido al hecho de que si van por separado, que se llevará a 8+9 = 17 minutos de la cruz, más el tiempo adicional para llevar la lámpara de nuevo. Si van juntos, sin embargo, va a tomar a sólo 9 minutos, e incluso si la próxima más lentas de la persona(6) trae la lámpara de nuevo, sólo se llevará a 9+6 = 15 minutos.
El algoritmo para la solución es la siguiente (se puede hacer variaciones menores a ello sin necesidad de cambiar el resultado) :
1> 1 y 3 de la cruz, 3 trae de vuelta la lámpara : 3+3 = 6 minutos.
2> 8 y 9 de la cruz, 1 trae la lámpara : 9+1 = 10 minutos.
3> 1 y 3 de la cruz, 1 trae la lámpara : 3+1 = 4 minutos.
4> 1 y 4 de la cruz, 1 trae la lámpara : 4+1 = 5 minutos.
5> 1 y 6 de la cruz - todo el mundo tiene reachedthe otro lado : 6 minutos
Tiempo Total = 6 + 10 + 4 + 5 + 6 = 31 minutos
Así que el truco elemental es hacer las dos más lenta que la gente de la cruz sólo una vez, juntos. Saludos!