\begin{align}&a_{n} = \frac{1}{2 a_{n-1}} + 2 a_{n-2}\\
\iff & 2 a_{n} a_{n-1} + 1 = 2 ( 2 a_{n-1} a_{n-2} + 1)\\
\implies & 2 a_{n} a_{n-1} + 1 = 2^{n-2} (2 a_2 a_1 + 1 ) = \frac{5}{16} 2^n\\
\implies & a_{n}/a_{n-2} = \frac{\frac{5}{16} 2^n - 1}{\frac{5}{32} 2^n - 1}\\
\implies & a_{n} = \begin{cases}
a_2 \prod_{k=0}^{m-1} (\frac{\frac{5}{16} 2^n - 4^k}{\frac{5}{32} 2^n - 4^k}), & \text{for}\;n = 2m\\
a_1 \prod_{k=0}^{m} (\frac{\frac{5}{16} 2^n - 4^k}{\frac{5}{32} 2^n - 4^k}), &
\text{for}\;n = 2m+1
\end{casos} \end{align}
Esto nos da una lista bastante feo ai=(12,14,3,23,274,3827,105376,30021053,1674276004,957638167427,…) y no puedo ver ningún patrón obvio en él.