$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin {align} & \bbox [5px,#ffd]{ \int_ {0}^{1} \pars {% \left\lfloor 2 \over x \right\rfloor - 2 \left\lfloor 1 \over x \right\rfloor } \dd x} \,\,\, \stackrel {x\ \mapsto\ 1/x}{=}\,\,\, \int_ {1}^{ \infty }{% \left\lfloor 2x \right\rfloor - 2 \left\lfloor x \right\rfloor\ , \over x^{2}}\, \dd x \\ [5mm] = &\\N- \lim_ {N \to \infty } \pars {% \int_ {1}^{N}{ \left\lfloor 2x \right\rfloor \over x^{2}}\, \dd x - 2 \int_ {1}^{N}{ \left\lfloor x \right\rfloor \over x^{2}}\, \dd x} \\ [5mm] = &\\N- 2 \lim_ {N \to \infty } \pars {% \int_ {2}^{2N}{ \left\lfloor x \right\rfloor \over x^{2}}\, \dd x - \int_ {1}^{N}{ \left\lfloor x \right\rfloor \over x^{2}}\, \dd x} \\ [5mm] = &\\N- 2 \lim_ {N \to \infty } \pars {% \int_ {N + 1}^{2N}{ \left\lfloor x \right\rfloor \over x^{2}}\, \dd x - \int_ {1}^{2}{ \left\lfloor x \right\rfloor \over x^{2}}\, \dd x} \\ [5mm] = &\\\N- -1 + 2 \lim_ {N \to \infty }\,\,\, \sum_ {k = N + 1}^{2N - 1}\N-,\N-, \int_ {k}^{k + 1}{ \left\lfloor x \right\rfloor \over x^{2}}\, \dd x = -1 + 2 \lim_ {N \to \infty }\,\,\, \sum_ {k = N + 1}^{2N - 1}\N-,\N-,{1 \over k + 1} \\ [5mm] = &\\\N- -1 + 2 \lim_ {N \to \infty }\,\,\, \sum_ {k = N + 2}^{2N}\N, {1 \over k} = -1 + 2 \lim_ {N \to \infty }\,\,\, \pars {H_{2N} - H_{N - 1}} \\ [5mm] = &\\N- \bbx {2 \ln\pars {2} - 1} \approx 0.3863 \\ & \end {align}