Estoy tratando de evaluar $$\sum_{k=1}^{\infty}\frac{\sin\left(k\theta\right)}{k^{2u+1}}\tag{$u\in\mathbb{N}$}$$ using some results I've got. I know that $$\sum_{k=1}^{\infty}\frac{\sin\left(k\theta_0\right)}{k}=\tan^{-1}\left(\cot\left(\theta_0/2\right)\right)$$ which equals $\displaystyle\frac{1}{2}\left(\pi-\theta_0\right)$ whenever $0\leq\theta_0<2\pi.$ I realized that if I integrate both sides from $0$ to $\theta_1$, I get $$\sum_{k=1}^{\infty}\frac{\cos\left(k\theta_1\right)-1}{k^{2}}=-\frac{\pi\theta_1}{2}+\frac{\theta_1^{2}}{4}\\\implies\sum_{k=1}^{\infty}\frac{\cos\left(k\theta_1\right)}{k^{2}}=\zeta\left(2\right)-\frac{\pi\theta_1}{2}+\frac{\theta_1^{2}}{4}$$ and integrating one more time from $0$ to $\theta_2$ show me that $$\sum_{k=1}^{\infty}\frac{\sin\left(k\theta_2\right)}{k^{3}}=\frac{\theta_2^{3}}{12}-\frac{\pi\theta_2^{2}}{4}+\zeta\left(2\right)\theta_2.$$ I considered integrating the first equation a $n$ number of times, so I could write $$\sum_{k=1}^{\infty}\left(\int_{0}^{\theta_{n}}\cdots\left(\int_{0}^{\theta_{2}}\left(\int_{0}^{\theta_{1}}\frac{\sin\left(k\theta_{0}\right)}{k}\,\mathrm{d}\theta_{0}\right)\,\mathrm{d}\theta_{1}\right)\cdots\,\mathrm{d}\theta_{n-1}\right)\\=\frac{1}{2}\left(\int_{0}^{\theta_{n}}\cdots\left(\int_{0}^{\theta_{2}}\left(\int_{0}^{\theta_{1}}\pi-\theta_{0}\,\mathrm{d}\theta_{0}\right)\,\mathrm{d}\theta_{1}\right)\cdots\,\mathrm{d}\theta_{n-1}\right)\\=\frac{1}{2}\left(\frac{\pi\theta_{n}^{n}}{n!}-\frac{\theta_{n}^{n+1}}{\left(n+1\right)!}\right)$$ using the well-established zeta function of a even number and somehow extracting the trigonometric sum apart from that mess. Looking at some attempts like $$\int_0^{\theta_1}\frac{\sin(k\theta_0)}{k}\,\mathrm d\theta_0=\frac{-\cos(k\theta_1)}{k^2}+\frac{1}{0!k^2}$$ $$\int_0^{\theta_2}\frac{-\cos(k\theta_1)}{k^2}+\frac{1}{k^2}\,\mathrm d\theta_1=\frac{-\sin(k\theta_2)}{k^3}+\frac{\theta_2}{1!k^2}$$ $$\int_0^{\theta_3}\frac{-\sin(k\theta_2)}{k^3}+\frac{\theta_2}{1!k^2}\,\mathrm d\theta_2=\frac{\cos(k\theta_3)}{k^4}+\frac{\theta_3^2}{2!k^2}-\frac{1}{0!k^4}$$ $$\int_0^{\theta_4}\frac{\cos(k\theta_3)}{k^4}+\frac{\theta_3^2}{2!k^2}-\frac{1}{0!k^4}\,\mathrm d\theta_3=\frac{\sin(k\theta_4)}{k^5}+\frac{\theta_4^3}{3!k^2}-\frac{\theta_4}{1!k^4}$$ $$\int_0^{\theta_5}\frac{\sin(k\theta_4)}{k^5}+\frac{\theta_4^3}{3!k^2}-\frac{\theta_4}{1!k^4}\,\mathrm d\theta=\frac{-\cos(k\theta_5)}{k^6}+\frac{\theta_5^4}{4!k^2}-\frac{\theta_5^2}{2!k^4}+\frac{1}{0!k^6}$$ show some pattern. Which pattern? I conjectured that $$\sum_{k=1}^{\infty}\left(\int_{0}^{\theta_{n}}\cdots\left(\int_{0}^{\theta_{2}}\left(\int_{0}^{\theta_{1}}\frac{\sin\left(k\theta_{0}\right)}{k}\,\mathrm{d}\theta_{0}\right)\,\mathrm{d}\theta_{1}\right)\cdots\,\mathrm{d}\theta_{n-1}\right)\\=\left(-1\right)^{n}\sum_{k=1}^{\infty}\frac{\sin\left(n\pi/2+k\theta_{n}\right)}{k^{n+1}}+\sum_{i=1}^{\lfloor\frac{n+1}{2}\rfloor}\frac{\left(-1\right)^{i+1}\theta^{n+1-2i}_{n}\zeta\left(2i\right)}{(n+1-2i)!}$$ which seems quite plausible (otherwise, it wouldn't be a conjecture). This implies $$\sum_{k=1}^{\infty}\frac{\sin\left(n\pi/2+k\theta_{n}\right)}{k^{n+1}}=\frac{\left(-1\right)^{n}}{2}\left(\frac{\pi\theta_{n}^{n}}{n!}-\frac{\theta_{n}^{n+1}}{\left(n+1\right)!}\right)+\sum_{i=1}^{\lfloor\frac{n+1}{2}\rfloor}\frac{\left(-1\right)^{n+i}\theta_{n}^{n+1-2i}\zeta\left(2i\right)}{(n+1-2i)!}$$ and, because I am interested in the case $n=2u$, this turns out to be $$\sum_{k=1}^{\infty}\frac{\sin\left(u\pi+k\theta_{n}\right)}{k^{2u+1}}=\left(-1\right)^{u}\sum_{k=1}^{\infty}\frac{\sin\left(k\theta_{}\right)}{k^{2u+1}}\\=\frac{1}{2}\left(\frac{\pi\theta_{2u}^{2u}}{(2u+1)!}-\frac{\theta_{2u}^{2u+1}}{\left(2u+1\right)!}\right)+\sum_{i=1}^{\lfloor\frac{2u+1}{2}\rfloor}\frac{\left(-1\right)^{i}\theta^{2u+1-2i}\zeta\left(2i\right)}{(2u+1-2i)!}$$ and, therefore $$\sum_{k=1}^{\infty}\frac{\sin\left(k\theta_{}\right)}{k^{2u+1}}=\frac{\left(-1\right)^u}{2}\left(\frac{\pi\theta^{2u}}{(2u)!}-\frac{\theta^{2u+1}}{\left(2u+1\right)!}\right)+\sum_{i=1}^{\lfloor\frac{2u+1}{2}\rfloor}\frac{\left(-1\right)^{u+i}\theta^{2u+1-2i}\zeta\left(2i\right)}{(2u+1-2i)!}.$$ Ahora, algunas preguntas: ¿cómo puedo comprobar si mi conjetura es correcta? ¿Hay alguna buena trucos que puede utilizar cuando se trabaja con múltiples integraciones como estas? Hay otro enfoque con esta serie?
EDITAR
Tal vez la inducción me puede ayudar. Mi intento: Asumir $$\sum_{k=1}^{\infty}\frac{\sin\left(k\theta_{}\right)}{k^{2u+1}}=\frac{\left(-1\right)^u}{2}\left(\frac{\pi\theta^{2u}}{(2u)!}-\frac{\theta^{2u+1}}{\left(2u+1\right)!}\right)+\sum_{i=1}^{\lfloor\frac{2u+1}{2}\rfloor}\frac{\left(-1\right)^{u+i}\theta^{2u+1-2i}\zeta\left(2i\right)}{(2u+1-2i)!}$$ $$=\frac{\left(-1\right)^u}{2}\left(\frac{\pi\theta^{2u}}{(2u)!}-\frac{\theta^{2u+1}}{\left(2u+1\right)!}\right)+\sum_{i=1}^{u}\frac{\left(-1\right)^{u+i}\theta^{2u+1-2i}\zeta\left(2i\right)}{(2u+1-2i)!}.$$ Base case $u=1:$ $$\sum_{k=1}^{\infty}\frac{\sin\left(k\theta_{}\right)}{k^{3}}=-\frac{1}{2}\left(\frac{\pi\theta^2}{2}-\frac{\theta^3}{6}\right)+\frac{\theta\zeta(2)}{1}=-\frac{\pi\theta^2}{4}+\frac{\theta^3}{12}+\theta\,\zeta(2)$$ Sorprendentemente, es correcto! Ahora, voy a tratar de resolver el caso de $u=t+1.$
SEGUNDA EDICIÓN Como mi respuesta muestra, la inducción puede demostrar que mi conjetura era correcta. Problema resuelto.