Debido a $f$ es continua, monótona creciente y surjective, $f(0) = 0$$f(1) = 1$.
Deje $u = f^{-1}(x)$:
$$
\int^1_0 f^{-1}(x) \,dx = \int^1_0 u\, df(u) = uf(u)\bigg|^1_0 - \int^1_0 f(u)\,du = 1- \int^1_0 f(x)\,dx.
$$
Acaba de dibujar una imagen utilizando tikz
:
El código es el siguiente, siéntase libre de tomar y utilizar.
\begin{tikzpicture}[scale=4]
\shade[top color=blue,bottom color=gray!50] plot [smooth, tension=1]
coordinates { (0,0) (0.3,0.2) (0.6,0.8) (1,1)} |- (0,0);
\shade[bottom color=cyan,top color=gray!50] plot [smooth, tension=1]
coordinates { (0,0) (0.3,0.2) (0.6,0.8) (1,1)} |- (0,1);
\draw (0.7,0.2) node[above] {$\displaystyle\int_0^{1} f(x)\,dx$};
\draw (0.3,0.7) node[above] {$\displaystyle\int_0^{1} f^{-1}(y)\,dy$};
\draw[style=help lines] (0,0) grid (1.2,1.2);
\draw[->] (-0.2,0) -- (1.2,0) node[right] {$x$};
\draw[->] (0,-0.2) -- (0,1.2) node[above] {$y$};
\draw plot [smooth, tension=1] coordinates { (0,0) (0.3,0.2) (0.6,0.8) (1,1)};
\end{tikzpicture}