sí, es \sum_{i,j,k\in \mathbb{Z}}\binom{n}{i+j}\binom{n}{j+k}\binom{n}{i+k}$ $ y nos estamos sumando sobre todas posibles tríos de números enteros. Parece bastante obvio que el resultado no es un infinito. He intentado calcular \sum_{i,j \in \mathbb{Z}} \binom{n}{i+j}\sum_{k \in \mathbb{Z}} \binom{n}{i+k} \binom{n}{j+k} pero no más fácil para mí. Mi intuición dice que estamos calculando algo sobre conjunto de tamaño 3n, pero no pude conseguir cualquier idea de derecho. Agradeceria alguna ayuda en esta tarea de examen super viejo.
Respuestas
¿Demasiados anuncios?La clave está dada en cualquier (u,v,w) \in \mathbb{Z}^3, uno puede encontrar (i,j,k) \in \mathbb{Z}^3 tal que \begin{cases} u &= i + j,\\ v &= j + k,\\ w &= k + i \end{casos} cuando y sólo cuando u + v + w es incluso. Además, el (i,j,k) asociado a (u,,v,w) es único, si es que existe. Esto lleva a
\sum_{i,j,k \in \mathbb{Z}}\binom{n}{i+j} \binom{n}{j+k}\binom{n}{k+i} = \sum_{\substack{u,v,w \in \mathbb{Z},\\ u+v+w\text{ par}}} \binom{n}{u}\binom{n}{v}\binom{n}{w} = \sum_{\substack{0 \le u, v, w \le n\\ u+v+w\text{ par}}} \binom{n}{u}\binom{n}{v}\binom{n}{w}\\ = \frac12 \sum_{0 \le u, v, w \le n}\left(1 + (-1)^{u+v+w}\right)\binom{n}{u}\binom{n}{v}\binom{n}{w} = \frac12\left\{\left[\sum_{u=0}^n \binom{n}{u}\right)^3 + \left[\sum_{u=0}^n (-1)^u\binom{n}{u}\right)^3 \right\}\\ = \frac12\left[(1+1)^{3n} + (1-1)^{3n}\right] \stackrel{\color{blue}{[1]}}{=} \frac12 \left[2^{3n} + \begin{cases}0,& n > 0\\1,&n = 0\end{casos}\right] = \begin{cases}2^{3n-1},&n > 0\\1, &n = 0\end{casos}
Notas
- \color{blue}{[1]} - gracias a @FelixMartin señalando el caso especial en n = 0.
\newcommand{\ángulos}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\mitad}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,\mathrm{Li}_{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}
\begin{equation} \mathbf{\mbox{The Question:}\quad} \sum_{j,k,\ell\ \in\ \mathbb{Z}}\,\, {n \choose j + k}{n \choose k + \ell}{n \choose j + \ell} =\ ?\tag{1} \end{equation}
\begin{equation}\mbox{Note that}\ \sum_{j,k,\ell\ \in\ \mathbb{Z}}\,\, {n \choose j + k}{n \choose k + \ell}{n \choose j + \ell}= \sum_{j,k\ \in\ \mathbb{Z}}\,\, {n \choose j + k}\ \overbrace{\sum_{\ell\ \in\ \mathbb{Z}}{n \choose k + \ell} {n \choose j + \ell}}^{\ds{\equiv\ \,\mathcal{I}}}\tag{2} \end{equation}
\begin{align} \fbox{%#%#%} & = \sum_{\ell\ \in\ \mathbb{Z}}{n \choose k + \ell}{n \choose j + \ell} = \sum_{\ell\ \in\ \mathbb{Z}}{n \choose k + \ell}{n \choose n - j - \ell} \\[4mm] & = \sum_{\ell\ \in\ \mathbb{Z}}{n \choose k + \ell}\oint_{\verts{z} = 1^{-}} {\pars{1 + z}^{n} \over z^{n - j - \ell + 1}}\,{\dd z \over 2\pi\ic} = \oint_{\verts{z} = 1^{-}} {\pars{1 + z}^{n} \over z^{n - j + 1}} \sum_{\ell\ \in\ \mathbb{Z}}{n \choose k + \ell}z^{\ell}\,{\dd z \over 2\pi\ic} \\[4mm] & = \oint_{\verts{z} = 1^{-}} {\pars{1 + z}^{n} \over z^{n - j + k + 1}} \sum_{\ell\ \in\ \mathbb{Z}}{n \choose \ell}z^{\ell}\,{\dd z \over 2\pi\ic} \\[4mm] & = \oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{n} \over z^{n - j + k + 1}} \pars{1 + z}^{n}\,{\dd z \over 2\pi\ic} = {2n \choose n - j + k} = {2n \choose n + j - k} \\[4mm] & = \fbox{$\ds{\ \oint_{\verts{z} = 1^{-}} {\pars{1 + z}^{2n} \over z^{n + j - k + 1}}\,{\dd z \over 2\pi\ic}\ }$} = \fbox{%#%#%} \end{align}
El original de la sumación \ds{\ \,\mathcal{I}\ } se reduce a \ds{\ \,\mathcal{I}\ }: \begin{align} &\color{#f00}{\sum_{j,k,\ell\ \in\ \mathbb{Z}}\,\, {n \choose j + k}{n \choose k + \ell}{n \choose j + \ell}} = \sum_{j,k\ \in\ \mathbb{Z}}{n \choose j + k}\oint_{\verts{z} = 1^{-}} {\pars{1 + z}^{2n} \over z^{n + j - k + 1}}\,{\dd z \over 2\pi\ic} \\[4mm] = &\ \sum_{j\ \in\ \mathbb{Z}}\,\,\oint_{\verts{z} = 1^{-}} {\pars{1 + z}^{2n} \over z^{n + j + 1}} \sum_{k\ \in\ \mathbb{Z}}{n \choose j + k}z^{k}\,{\dd z \over 2\pi\ic} = \sum_{j\ \in\ \mathbb{Z}}\,\,\oint_{\verts{z} = 1^{-}} {\pars{1 + z}^{2n} \over z^{n + 2j + 1}} \sum_{k\ \in\ \mathbb{Z}}{n \choose k}z^{k}\,{\dd z \over 2\pi\ic} \\[4mm] = &\ \sum_{j\ \in\ \mathbb{Z}}\,\,\oint_{\verts{z} = 1^{-}} {\pars{1 + z}^{3n} \over z^{n + 2j + 1}}\,{\dd z \over 2\pi\ic} = \sum_{j\ \in\ \mathbb{Z}}{3n \choose n + 2j} = \sum_{j\ \in\ \mathbb{Z}}{3n \choose n + j}\,{1 + \pars{-1}^{j} \over 2} \\[4mm] = &\ \half\sum_{j\ \in\ \mathbb{Z}}{3n \choose j} + \half\,\pars{-1}^{n}\sum_{j\ \in\ \mathbb{Z}}{3n \choose j}\pars{-1}^{j} = \half\,\pars{1 + 1}^{3n} + \half\,\pars{-1}^{n}\pars{1 - 1}^{3n} \\[4mm] = &\ \color{#f00}{2^{3n - 1} + \half\,\delta_{n0}} \end{align}