Estoy aprendiendo los conceptos de inmersiones en el momento. Sin embargo estoy un poco confundida cuando definen una inmersión como una función de $f: X\rightarrow Y$ donde $X$ $Y$ son colectores con el dim$X <$ dim$Y$ tal que $df_x: T_x(X)\rightarrow T_y(Y)$ es inyectiva.
Me preguntaba ¿por qué no nos vamos a $f$ ser inyectiva y decir que es el mejor de los casos podemos obtener la condición de la dim$X <$ dim$Y$(ya que bajo esta condición, no podemos aplicar el teorema de la función inversa)?
También hace inyectividad de $df_x$ inply la inyectividad de $f$ (parece que yo no puedo probarlo)?
¿Cómo debemos imagen de inmersión (algo así como el espacio de la tangente de $X$ siempre se "sumerge" en el espacio de la tangente de $Y$)?
Gracias por la ayuda de todos!