¿Evaluar: %#% $ de #% he encontrado puede ser simplificado a %#% $ de #% he encontrado el valor exacto en la tabla de integrales: $$\int_0^{\frac{\pi}{2}}\ln ^2\left(\cos ^2x\right)\text{d}x$ $ alguien sabe cómo evaluar esto?
Respuestas
¿Demasiados anuncios?Encontrar una manera de obtener el número de uso de las funciones gamma, no es riguroso.
Considere el integral $I(\beta) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos x)^\beta dx$. Sabemos que: %#% $ de #% es la integral que queremos. Introducir $$2 \frac{d^2}{d\beta^2} I(\beta) \bigg|_{\beta=0} = 4 \int_{0}^{\frac{\pi}{2}} \ln^2(\cos x) dx$, tenemos:
$$\begin{align} I(\beta) &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos x)^{\beta-1} d\sin x\\ &= \int_0^1 (4 u (1-u))^{\frac{\beta-1}{2}} d( 2u )\\ &= 2^{\beta} \int_0^1 u^{\frac{\beta+1}{2}-1} (1-u)^{\frac{\beta+1}{2}-1} du\\ &= 2^{\beta} \frac{\Gamma(\frac{\beta+1}{2})^2}{\Gamma(\beta+1)} \end {Alinee el} $$ con la expansión de taylor de varias condiciones de $u = \frac{1 + \sin x}{2}$, % $$ \begin{align} 2^{\beta} &= 1 + \ln(2) \beta + \frac{\ln^2 2}{2}\beta^2 + \,...\\ \Gamma(\frac{\beta+1}{2}) &= \sqrt{\pi} \left( 1 - \frac{\gamma + 2\ln 2}{2} \beta + \frac{\pi^2+2( \gamma + 2\ln 2)^2}{16}\beta^2 + \, ...\right)\\ \Gamma(\beta+1) &= 1 -\gamma \beta + \frac{6\gamma^2 + \pi^2}{12} \beta^2 + \,... \end{alinee el} $$ obtenemos: $$\begin{align} &I(\beta) = \pi \left( 1 - \ln(2) \beta + \frac{\pi^2 + 12 \ln^2 2}{24}\beta^2 + \,... \right)\\ \implies &2 \frac{d^2}{d\beta^2} I(\beta)\bigg|_{\beta=0} = 2\pi \left( \frac{\pi^2}{12} + \ln^2 2 \right) \end {Alinee el} $$
Empezar con $$ \begin{align} \int_0^{\pi/2}\log(\sin(x))\,\mathrm{d}x &=\frac12\int_0^\pi\log(\sin(x))\,\mathrm{d}x\\ &=\int_0^{\pi/2}\log(\sin(2x))\,\mathrm{d}x\\ &=\int_0^{\pi/2}\Big(\log(2)+\log(\sin(x))+\log(\cos(x))\Big)\,\mathrm{d}x\\ &=\frac\pi2\log(2)+2\int_0^{\pi/2}\log(\sin(x))\,\mathrm{d}x\tag{1} \end{align} $$ Por lo tanto, $$ \int_0^{\pi/2}\log(\sin(x))\,\mathrm{d}x=-\frac\pi2\log(2)\etiqueta{2} $$
Siguiente $$ \begin{align} \int_0^{\pi/2}\log^2(\sin(x))\,\mathrm{d}x &=\int_0^{\pi/2}\Big(\log(2)+\log(\sin(x))+\log(\cos(x))\Big)^2\,\mathrm{d}x\\ &=\frac\pi2\log^2(2)+4\log(2)\int_0^{\pi/2}\log(\sin(x))\,\mathrm{d}x\\ &+2\int_0^{\pi/2}\log(\sin(x))\log(\cos(x))\,\mathrm{d}x\\ &+2\int_0^{\pi/2}\log^2(\sin(x))\,\mathrm{d}x\tag{3} \end{align} $$ El uso de $(2)$ $(3)$ rendimientos $$ \int_0^{\pi/2}\log^2(\sin(x))\,\mathrm{d}x =\frac32\pi\log^2(2)-2\int_0^{\pi/2}\log(\sin(x))\log(\cos(x))\,\mathrm{d}x\etiqueta{4} $$
Como en esta respuesta, podemos utilizar el contorno de integración para conseguir que $$ \begin{align} \int_0^\infty\frac{\log^2(x)}{1-x^2}\mathrm{d}x &=\int_0^\infty\frac{\log^2(ix)}{1+x^2}\mathrm{d}ix\\ &=i\int_0^\infty\frac{\left(\frac\pi2i+\log(x)\right)^2}{1+x^2}\mathrm{d}x\\ &=i\int_0^\infty\frac{\log^2(x)-\frac{\pi^2}{4}}{1+x^2}\mathrm{d}x -\pi\int_0^\infty\frac{\log(x)}{1+x^2}\mathrm{d}x\tag{5} \end{align} $$ Mirando la parte imaginaria de $(5)$, vemos que $$ \int_0^\infty\frac{\log^2(x)}{1+x^2}\mathrm{d}x=\frac{\pi^3}8\etiqueta{6} $$
Con un cambio de variables, $(6)$ se convierte en $$ \begin{align} \frac{\pi^3}8 &=\int_0^{\pi/2}\log^2(\tan(x))\,\mathrm{d}x\\ &=\int_0^{\pi/2}\Big(\log^2(\sin(x))+\log^2(\cos(x))-2\log(\sin(x))\log(\cos(x))\Big)\,\mathrm{d}x\tag{7} \end{align} $$ que los rendimientos de $$ \int_0^{\pi/2}\log^2(\sin(x))\,\mathrm{d}x =\frac{\pi^3}{16}+\int_0^{\pi/2}\log(\sin(x))\log(\cos(x))\,\mathrm{d}x\etiqueta{8} $$
La adición de dos veces $(8)$ $(4)$y dividiendo por $3$ da $$ \int_0^{\pi/2}\log^2(\sin(x))\,\mathrm{d}x=\frac{\pi^3}{24}+\frac12\pi\log^2(2)\etiqueta{9} $$ Por lo tanto, $$ \int_0^{\pi/2}\log^2(\cos^2(x))\,\mathrm{d}x=\frac{\pi^3}{6}+2\pi\log^2(2)\etiqueta{10} $$
Un problema relacionado. Mediante la sustitución de $ \cos(x) = y $, tenemos
$$ 4\int_0^{\frac{\pi}{2}}\ln^2\left(\cos x\right)\text{d}x = 4\int _{0}^{1}\!{\frac { \ln^2 \left y \right)}{ \sqrt {1-{y}^{2}}}}{dy} = I. $$
Para evaluar la última integral de la $I$, considere la integral
$$ F := 4\int _{0}^{1}\!{\frac { y^\alpha}{ \sqrt {1-{y}^{2}}}}{dy} = 2\,{\frac {\sqrt {\pi }\,\Gamma\left( \frac{\alpha}{2}+\frac{1}{2} \right) }{ \Gamma\left( \frac{\alpha}{2}+1 \right) }}. $$
$F$ fue evaluado usando la función beta. Ahora, $I$ sigue directamente de $F$
$$ I = F_{\alpha \alpha}|_{\alpha=0} = \frac{\pi}{6} \, \left( {\pi }^{2}+12\, \left( \ln \left( 2 \right) \right)^{2} \right) \sim 8.186488098. $$
Nota 1: Arce no puede dar una solución de forma cerrada para este tipo de integrales.
Nota 2: se puede evaluar más generales integrales, por ejemplo
$$ \int_0^{\frac{\pi}{2}}\ln^3\left(\cos ^2x\right)\text{d}x= -\pi \, \left( 6\,\zeta \left( 3 \right) +{\pi }^{2}\ln \left( 2 \right) +4\, \left( \ln \left( 2 \right) \right) ^{3} \right).$$