5 votos

Concepto de línea del mundo

Mi árbol genealógico (yo, mis padres, los padres de mis padres, etc.) está obviamente fijado en el tiempo, con sus fechas de nacimiento denotando un nodo. ¿Puede considerarse un árbol genealógico de este tipo como una forma abstracta de un línea mundial ? ¿Por qué sí o por qué no?

Actualización: @ACuriousMind, vale, déjame cambiar el ejemplo para acercarlo a la física de partículas. Imaginemos que tengo un montón de piezas de Lego idénticas (cada una de tipo A) en el tiempo 0. Entonces lo que hago es utilizar todas esas piezas para construir 50 bloques idénticos (cada uno de tipo B) y terminar en el tiempo 1. Después cojo todos estos bloques y construyo una casa (C) en el tiempo 2. ¿Sería ((A,0), (B,1), (C,2)) una línea del mundo? Si no es así, ¿dónde está el problema?

3voto

Sora Puntos 113

No.

Una línea del mundo es un mapa $\mathbb{R} \to \mathcal{M}$ donde $\mathcal{M}$ es la variedad cuatridimensional que representa el espaciotiempo. Tu árbol genealógico es un grafo que (con suerte) es más complejo que una simple línea, por lo que no puede considerarse un mapa de este tipo.

Si en lugar de eso tomas tu línea del mundo y la "pegas" a la de tu madre en tu nacimiento, y sigues su línea del mundo hasta su nacimiento, y así sucesivamente, podrías obtener un camino a través del espaciotiempo que podrías llamar línea del mundo. (Pero no le veo ningún valor).

3voto

Terry Bollinger Puntos 11535

... ¿Puede considerarse un árbol genealógico como una forma abstracta de línea del mundo? ¿Por qué sí o por qué no?

La respuesta es no, por dos razones:

  1. Un árbol es una estructura más compleja que una línea (teoría de grafos), y

  2. El concepto de línea de mundo se creó principalmente para tratar objetos simples que se mueven por un espacio mayoritariamente vacío. No es lo suficientemente amplio como para tratar objetos que interactúan de forma complicada.

Líneas Mundiales de Minkowski

Hermann Minkowski es el que inventó las líneas del mundo:

... para evitar decir "materia" o "electricidad" usaré ... "sustancia". Fijamos nuestra atención en el punto sustancial que es el punto del mundo x , y , z , t e imaginemos que somos capaces de reconocer este punto sustancial en cualquier otro momento... obtenemos, como imagen... la carrera sempiterna del punto sustancial... una línea mundial ... [over] t de $-\infty$ à $+\infty$ . El universo entero se resuelve en líneas similares...

-- H. Minkowski, Espacio y tiempo (Conferencia de Colonia), 21 de septiembre de 1908.

Dado que la conferencia de Minkowski versaba sobre la teoría especial de la relatividad de Einstein, su objetivo era proporcionar un marco matemático de lo que les ocurre a los objetos cuando se aproximan a velocidades muy altas. Así pues, su definición de línea del mundo se centraba en objetos bien definidos (pequeños o grandes) que se mueven principalmente por el espacio vacío. Los objetos que cambian de forma o interactúan de manera compleja, lo que hoy llamaríamos física de la materia condensada, no formaban parte de su agenda.

Si juntamos todo eso, obtendremos más o menos lo siguiente:

A Línea del mundo de Minkowski es una imagen gráfica de cómo un grupo cohesionado de partículas materiales (o una sola partícula) se desplaza por un espacio mayoritariamente vacío durante un largo periodo de tiempo.

Identidad Worldlines

Pero tu pregunta sigue siendo fascinante, porque si se toma en serio obliga a un examen más cuidadoso del concepto original de Minkowski.

Por ejemplo, fíjate bien en esta parte de la definición de Minkowski:

"... imaginemos que somos capaces de reconocer este punto sustancial en cualquier otro momento ..."

Lo que Minkowski decía en esta línea aparentemente sencilla es que para definir una línea del mundo primero hay que tener un universo en el que los cúmulos de partículas tengan unicidad o identidad a lo largo del tiempo. Esta "unicidad" permite entonces a un observador futuro (¿y te acabas de dar cuenta de que no es sólo la mecánica cuántica la que requiere observadores?) mirar y decir "aunque esta entidad esté en un lugar nuevo, tiene una firma o identidad única que me permite reconocerla como la misma que vi antes".

No es un concepto pequeño, y no se da en cualquier universo. Un universo de nada más que gases difusos carece de él más allá de la escala atómica, por ejemplo. Lo mismo ocurre en el mundo de la mecánica cuántica, donde, por ejemplo, las partículas bosónicas con idénticos rasgos identificativos (pensemos en los fotones de los láseres) se vuelven literal y profundamente indistinguibles entre sí.

Sin embargo, en nuestro universo, mucho más interesante, objetos como diminutas partículas de polvo o granos de arena pueden persistir durante largos periodos. Su ubicación por sí sola les confiere un cierto grado de identidad, siempre que uno se acuerde de mirarlos con la suficiente frecuencia. Pero aún más específicamente, tales objetos exhiben patrones únicos y persistentes de tipos de partículas y geometrías relativas que los hacen clásicamente identificables a lo largo del tiempo.

Otra forma de decirlo es que la capacidad de los conglomerados para albergar partículas únicas en configuraciones únicas los convierte en dispositivos de memoria es decir, entidades capaces de retener y almacenar durante largos periodos una cantidad más abstracta llamada "información" que en este caso especifica la identidad de la entidad.

Es esta cantidad de información más abstracta la que permite la capacidad de Minkowski de "reconocer este punto sustancial en cualquier otro momento", y por esa razón merece un nombre específico para esta discusión. Así que, por comodidad, me referiré a ella como una "línea del mundo de identidad" que se mueve en sincronización y localización exactas junto con la línea del mundo material de partículas y masa que etiqueta.

Separación de las líneas del mundo de Minkowski y de identidad

Como las líneas del mundo de Minkowski siempre conservan la masa, en realidad son sólo líneas. No pueden dividirse ni formar estructuras gráficas más complicadas sin violar sus propias definiciones.

Sin embargo, las mundolíneas de identidad que viajan con las mundolíneas de masa de Minkowski son un caso mucho más interesante. Al estar compuestas de información y no de materia, pueden reproducirse con bastante facilidad para crear ramas en forma de árbol. Como la identidad no tiene masa inherente, también puede moverse con rapidez y flexibilidad por el espacio de una forma que ningún objeto material podría hacer jamás.

Así, aunque la línea del mundo de la partícula masiva original y su línea del mundo de identidad co-viajera permanecen unidas hasta que la partícula se destruye, ejemplares de subconjuntos seleccionados de su línea del mundo de identidad puede separarse en cualquier momento para formar nuevas ramas en un identidad worldtree .

En un soberbio alarde de ironía preinformática, Minkowski invoca inadvertidamente el uso de árboles del mundo de identidad ramificada cuando pide al lector que "imagine que somos capaces de reconocer este punto sustancial en cualquier otro momento". Una entidad sólo puede reconocerse más tarde si fue observada anteriormente y si el recuerdo de esa observación se conservó independientemente del objeto. Este acto de identificar y preservar externamente los datos de identificación sobre el "punto sustancial" de Minkowski es idéntico a crear una nueva rama en su árbol del mundo de identidad.

Familias como identidad de ADN Worldtrees

Ahora, por fin, este largo apéndice finalmente volver a su pregunta original: ¿Puede considerarse un árbol genealógico como una forma abstracta de línea del mundo?

En términos de líneas del mundo que conservan la masa de Minkowski, la respuesta sigue siendo no.

Sin embargo, en lo que respecta a las líneas del mundo de identidad y los árboles del mundo que viajan con las líneas del mundo de Minkowski y las hacen observables, la respuesta es que existen paralelismos muy estrechos.

Hace mucho tiempo, la vida aprendió un asombroso truco de dividir líneas del mundo de identidad de forma totalmente simétrica. Así, en lugar de que una rama contenga una copia incompleta de la identidad original, ambos Las sucursales contienen datos de identidad esencialmente idénticos, almacenados esencialmente en la misma forma física. El objeto ha sido clonado con un grado de precisión que rara vez o nunca ocurre con la no-vida.

La forma más común de este truco de la vida es una molécula llamada ADN y, por supuesto, es este ADN el que define los árboles genealógicos.

Y aunque pueda parecer extraño que una discusión sobre el concepto de línea del mundo de Minkowski termine con el ADN, en realidad es imposible ignorar el profundo papel que el concepto, sólo ligeramente más amplio, de árbol del mundo de identidad desempeña en todos los aspectos de la física. No se puede observar el mundo físico sin crear ramas en los árboles del mundo de identidad de los objetos observados. A un nivel aún más profundo, cada creación de una rama de identidad mueve el objeto observado un poco más hacia el mundo clásico de abundante información histórica, y un poco más lejos del mundo curiosamente indefinido y ahistórico de la mecánica cuántica.

0voto

Joe Liversedge Puntos 2134

Interesante pregunta. He aquí algunas formas posibles de enunciar las restricciones de un gráfico en el espaciotiempo para que se ajuste a lo que entendemos por línea del mundo. En cada caso, he enunciado la restricción en un lenguaje sencillo y, a continuación, entre paréntesis, he dado una explicación técnica más precisa.

  1. El gráfico es temporal. (En términos más técnicos, tal vez diríamos que para cualquier vecindad de un punto en el gráfico tal que la vecindad tiene la topología de una línea, esa línea es timelike).

  2. El objeto se encuentra en un lugar en un momento dado. (Es decir, una superficie espacial sólo lo interseca en un lugar).

  3. El gráfico no tiene "bifurcaciones". (El grafo es un colector unidimensional).

Creo que tu ejemplo incumple la propiedad 3. La propiedad 2 no siempre va a ser aplicable a la RG, ya que no todos los espaciotiempos tienen las superficies de semejanza espacial apropiadas (es decir, no todos los espaciotiempos son globalmente hiperbólicos). La propiedad 1 puede incluso no ser deseable, ya que podemos querer hablar de fotones o taquiones.

Por cierto, quizá le guste el relato de Robert Heinlein "Life-Line", que describe algo muy parecido a lo que usted cuenta. Está antologado en "El pasado a través del mañana".

También podríamos preocuparnos por las curvas cerradas de semejanza temporal (CTC). Esto también está relacionado con un relato de Heinlein (uno de sus cuentos más conocidos) titulado ' "-Todos ustedes Zombies-" ', antologado en "Fuera de la secuencia principal".

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X