Cuando yo estaba aprendiendo de análisis, a menudo me preguntaba por qué yo no podía encontrar nada parecido a $$\iint f(x) (dx)^2$$ en un estándar de cálculo de texto, y concluyó que debería ser de sentido – aunque, ya que podemos diferenciar funciones varias veces, tendría sentido que también se puede integrar en repetidas ocasiones.
Pero luego me topé con esta entrada de blog por el creador de Mathematica, mostrando que Leibniz había notación similar en mente cuando él fue el desarrollo del cálculo, y se enteró de la differintegral operador, con lo que la expresión anterior se parece a $D^{-2}[f(x)]$.
Mi pregunta es, ¿por qué no podemos ver este tipo de notación que a menudo en el análisis básico de los cursos? ¿Cuál es la gráfica de significado de una expresión – es decir, ¿cómo su comportamiento afecta a la forma de $f(x)$? ¿Y cómo se resuelve? Existe aún una clara análogo de la misma, y si es así ¿cuál es su significado geométrico?