He encontrado una forma cerrada para la siguiente nueva serie de la participación no-lineal armónica de los números.
La proposición. $$\sum_{n=1}^{\infty} \dfrac{H_n^2-(\gamma + \ln n)^2}{n} = \dfrac{5}{3}\zeta(3)-\dfrac{2}{3}\gamma^3-2\gamma \gamma_{1}-\gamma_{2} $$ donde \begin{align} & H_{n}: =\sum_{k=1}^{n}\frac{1}{k} \\ &\gamma: =\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{k}-\ln n\right) \\ & \gamma_{1}:=\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{\ln k}{k}-\frac{1}{2}\ln^2 n\right)\\& \gamma_{2}: =\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{\ln^2 k}{k}-\frac{1}{3}\ln^3 n\right), \end{align} $\gamma_1, \gamma_2$ Stieltjes constantes.
¿Qué herramienta utilizar para demostrarlo?