Permita que$f:\mathbb{Q}\to\mathbb{R}$ sea una función definida como:
$$ f (x) = \begin{cases}
0 & x^2 < 2\\
1 & x^2 \geq 2
\end {cases}$$ Is this function continuous? How can we check the continuity around $ \ sqrt {2}$ since it's not in $ \ mathbb {Q} $?