No sé si esto ayuda. Observar\begin{align}
f(x_1, \ldots, x_n)
\end {Alinee el} y \begin{align}
x_i = p_i+t(x_i-p_i)
\end {alinee el} entonces por regla de la cadena, tenemos\begin{align}
&\frac{d}{dt}f(p_1+t(x_1-p_1), p_2+t(x_2-p_2), \ldots, p_n+t(x_n-p_n)) \\
=& \frac{\partial f}{\partial x_1} \frac{d x_1}{d t}+ \frac{\partial f}{\partial x_2} \frac{dx_2}{dt}+\ldots + \frac{\partial f}{\partial x_n}\frac{dx_n}{dt}\\
=&\ \frac{\partial f}{\partial x_1} (x_1-p_1) + \frac{\partial f}{\partial x_2}(x_2-p_2) + \ldots +\frac{\partial f}{\partial x_n}(x_n-p_n)\\
=&\ \nabla f(p+t(x-p)) \cdot (x-p).
\end {Alinee el}