Estos días, conocí una desigualdad inusual cuando resuelvo un problema difícil, y demostrando la desigualdad significa que he hecho el trabajo! ¿Podría mostrarme cómo comprobarlo o negarlo? Por cierto, creo que es verdad!
$\forall t>0$, Tenemos\begin{align*} &4\ln t\ln (t + 2) - \ln t\ln (t + 1) - 3\ln t\ln (t + 3)\\ + &4\ln (t + 1)\ln (t + 3) - 3\ln (t + 1)\ln (t + 2) - \ln (t + 2)\ln \left( {t + 3} \right)>0. \end{align*}
Que $$f\left( t \right) = 4\ln t\ln \left( {t + 2} \right) - \ln t\ln \left( {t + 1} \right) - 3\ln t\ln \left( {t + 3} \right) + 4\ln \left( {t + 1} \right)\ln \left( {t + 3} \right) - 3\ln \left( {t + 1} \right)\ln \left( {t + 2} \right) - \ln \left( {t + 2} \right)\ln \left( {t + 3} \right),$ $ tenemos $$f'\left( t \right) = \frac{{2\left[ {{t^2}\ln t - 3{{\left( {t + 1} \right)}^2}\ln \left( {t + 1} \right) + 3{{\left( {t + 2} \right)}^2}\ln \left( {t + 2} \right) - {{\left( {t + 3} \right)}^2}\ln \left( {t + 3} \right)} \right]}}{{t\left( {t + 1} \right)\left( {t + 2} \right)\left( {t + 3} \right)}}.$ $ Let $$g\left( t \right) = {t^2}\ln t - 3{\left( {t + 1} \right)^2}\ln \left( {t + 1} \right) + 3{\left( {t + 2} \right)^2}\ln \left( {t + 2} \right) - {\left( {t + 3} \right)^2}\ln \left( {t + 3} \right),$ $ conseguimos $$g'\left( t \right) = 2\left[ {t\ln t - 3\left( {t + 1} \right)\ln \left( {t + 1} \right) + 3\left( {t + 2} \right)\ln \left( {t + 2} \right) - \left( {t + 3} \right)\ln \left( {t + 3} \right)} \right].$ $ y que % $ $$h\left( x \right) = t\ln t - 3\left( {t + 1} \right)\ln \left( {t + 1} \right) + 3\left( {t + 2} \right)\ln \left( {t + 2} \right) - \left( {t + 3} \right)\ln \left( {t + 3} \right),$tenemos\begin{align*} h'\left( x \right) &= \ln t - 3\ln \left( {t + 1} \right) + 3\ln \left( {t + 2} \right) - \ln \left( {t + 3} \right)\\ &= \ln \frac{{t{{\left( {t + 2} \right)}^3}}}{{{{\left( {t + 1} \right)}^3}\left( {t + 3} \right)}} = \ln \left[ {1 - \frac{{2t + 3}}{{{{\left( {t + 1} \right)}^3}\left( {t + 3} \right)}}} \right] < 0. \end{align*} sin embargo, parece que no hay nada!